Ciencias naturales

La ciencia (del latín scientĭa ‘conocimiento’) es un sistema ordenado de conocimientos estructurados que estudia, investiga e interpreta los fenómenos naturalessociales y artificiales.1 Los conocimientos científicos se obtienen mediante observaciones y experimentaciones en ámbitos específicos, dichos conocimientos deben ser organizados y clasificados sobre la base de principios explicativos ya sean de forma teórica o práctica. A partir de estos se generan preguntas y razonamientos, se construyen hipótesis, se deducen principios y se formulan teoríasleyes generales y sistemas organizados por medio de un método científico.2

La ciencia considera y tiene como fundamento las observaciones experimentales. Estas observaciones se organizan por medio de métodos, modelos y teorías con el fin de generar nuevos conocimientos. Para ello se establecen previamente unos criterios de verdad y un método de investigación. La aplicación de esos métodos y conocimientos conduce a la generación de nuevos conocimientos en forma de predicciones concretas, cuantitativas y comprobables referidas a observaciones pasadas, presentes y futuras. Con frecuencia esas predicciones pueden formularse mediante razonamientos y estructurarse como reglas o leyes generales, que dan cuenta del comportamiento de un sistema y predicen cómo actuará dicho sistema en determinadas circunstancias.

En un sentido más restringido, un científico es un individuo que utiliza el método científico;3 esta acepción fue acuñada por el teólogo, filósofo y hombre de ciencia William Whewell en 1840 en Philosophy of the Inductive Sciences («Filosofía de las ciencias inductivas» en español).

Clasificación de las ciencias

Hasta el Renacimiento todo el saber que no fuera técnico o artístico se situaba en el ámbito de la filosofía. El conocimiento de la naturaleza era sobre la totalidad: una ciencia universal. Aristóteles usó los términos episteme y philosophia para clasificar las ciencias, pero con un significado y contenido muy diferente al de «ciencia» en la Modernidad.4 Las primeras clasificaciones se remontan a Aristóteles,5 que considera tres categorías del saber:

  • Teoría, que busca la verdad de las ideas, como formas y como sustancias. Este saber está constituido por las ciencias cuyo conocimiento está basado en el saber por el saber: MatemáticasFísica y Metafísica.
  • Praxis o saber práctico encaminado al logro de un saber para guiar la conducta hacia una acción propiamente humana en cuanto racional: lo formaban la Ética, la Política, la Económica y la Retórica.
  • Poiesis o saber creador, saber poético, basado en la transformación técnica. Lo que hoy día se englobaría en la creación artística, artesanía y la producción de bienes materiales.

La clasificación aristotélica sirvió de fundamento para todas las clasificaciones que se hicieron en la Edad Mediaa hasta el Renacimiento, cuando las grandes transformaciones promovidas por los grandes adelantos técnicosb plantearon la necesidad de nuevas ciencias y sobre todo nuevos métodos de investigación que culminarán en la ciencia moderna del siglo XVII. Entonces aparece un concepto moderno de clasificación que supone la definitiva separación entre ciencia y filosofía.

En la Edad Moderna Tommaso CampanellaComenioBaconHobbes y John Locke propusieron diferentes clasificaciones.4 El Systema Naturae (1735) de Linneo, estableció los criterios de clasificación que más influencia han tenido en el complejo sistema clasificatorio de las ciencias naturales.4 André-Marie Ampère confeccionó una tabla con quinientas doce ciencias.6

En la Ilustración, D'Alembert escribió:

«No hay sabios que gustosamente no colocaran la ciencia de la que se ocupan en el centro de todas las ciencias, casi en la misma forma que los hombres primitivos se colocaban en el centro del mundo, persuadidos de que el universo había sido creado por ellos. Las profesiones de muchos de estos sabios, examinándose filosóficamente, encontrarían, posiblemente, incluso, además del amor propio, causas de peso suficiente para su justificación»

Discours préliminaire de l'Encyclopedie, París 1929, pág. 61

Interdisciplinariedad

A partir del siglo XIX y con el importante crecimiento experimentado por el conocimiento científico surgieron numerosas disciplinas científicas nuevas con yuxtaposiciones de parcelas establecidas por ciencias anteriores: bioquímicabiogeoquímicasociolingüísticabioética, etc.

La sistematización científica requiere el conocimiento de diversas conexiones, mediante leyes o principios teóricos, entre diferentes aspectos del mundo empírico que se caracterizan mediante conceptos científicos. Así los conceptos de la ciencia son nudos en una red de interrelaciones sistemáticas en la que las leyes y los principios teoréticos constituyen los hilos... Cuantos más hilos converjan o partan de un nudo conceptual, tanto más importante será su papel sistematizado o su alcance sistemático

Clasificación de Comte

En el siglo XIX Auguste Comte hizo una clasificación, mejorada después por Antoine Augustin Cournot en 1852 y por Pierre Naville en 1920.6 Comte basó su clasificación jerárquica en el orden en que las ciencias habían entrado, según su percepción, en estado positivo, así como en su complejidad creciente y generalización decreciente.8 De esta forma ordenó a las ciencias:9

Comte justifica la inclusión de la sociología en la clasificación, de la siguiente forma:

Poseemos ahora una física celeste, una física terrestre ya mecánica o química, una física vegetal y una física animal; todavía necesitamos una más y la última, la física social, para completar el sistema de nuestro conocimiento de la naturaleza.

Auguste Comte10

Clasificaciones fundamentales

Una clasificación general ampliamente usada es la que agrupa las disciplinas científicas en tres grandes grupos:

Esquema de clasificación planteado por el epistemólogo alemán Rudolf Carnap (1955):
Ciencias formales Estudian las formas válidas de inferencialógica - matemática. No tienen contenido concreto; es un contenido formal, en contraposición al resto de las ciencias fácticas o empíricas.
Ciencias naturales Son aquellas disciplinas científicas que tienen por objeto el estudio de la naturalezaastronomíabiologíafísicageologíaquímicageografía física y otras.
Ciencias sociales Son aquellas disciplinas que se ocupan de los aspectos del ser humano —cultura y sociedad—. El método depende particularmente de cada disciplina: administraciónantropologíaciencia políticademografíaeconomíaderechohistoriapsicologíasociologíageografía humana y otras.

Sin embargo, dicha clasificación ha sido discutida y requiere de cierta discusión complementaria. Así Wilhelm Dilthey considera inapropiado el modelo epistemológico de las «Naturwissenschaften» 'ciencias naturales'. Es decir, considera inadecuado usar el método científico, pensado para la física, a disciplinas que tiene que ver el estudio del hombre y la sociedad; y propone un modelo completamente diferente para las «Geisteswissenschaften» ('ciencias humanas' o 'ciencias del espíritu'), e.g., la filosofía, la psicología, la historia, la filología, la sociología, etc. Si para las ciencias naturales el objetivo último es la explicación, basada en la relación causa/efecto y en la elaboración de teorías descriptivas de los fenómenos, para las ciencias humanas se trata de la comprensión de los fenómenos humanos y sociales.

Mario Bunge (1972) considera el criterio de clasificación de la ciencia en función del enfoque que se da al conocimiento científico: por un lado, el estudio de los procesos naturales o sociales (el estudio de los hechos) y, por el otro, el estudio de procesos puramente lógicos (el estudio de las formas generales del pensar humano racional); es decir, postuló la existencia de una ciencia factual (o ciencia fáctica) y una ciencia formal.

Las ciencias factuales se encargan de estudiar hechos auxiliándose de la observación y la experimentación. La física, la psicología y la sociología son ciencias factuales porque se refieren a hechos que se supone ocurren en la realidad y, por consiguiente, tienen que apelar al examen de pruebas empíricas.11

  • La ciencia experimental se ocupa del estudio del mundo natural. Por mundo natural se ha de entender todo lo que pueda ser supuesto, detectado o medido a partir de la experiencia. En su trabajo de investigación, los científicos se ajustan a un cierto método, un método científico general y un método específico al campo concreto y a los medios de investigación.
  • La llamada «ciencia aplicada» consiste en la aplicación del conocimiento científico teórico (la llamada ciencia «básica» o «teórica») a las necesidades humanas y al desarrollo tecnológico. Por eso es muy común encontrar, como término, la expresión «ciencia y tecnología».
  • Las ciencias formales, en cambio, crean su propio objeto de estudio; su método de trabajo es puro juego de la lógica, en cuanto formas del pensar racional humano, en sus variantes: la lógica y las matemáticas. En la tabla que sigue se establecen algunos criterios para su distinción:12
Caracterización de las ciencias según el esquema de Bunge
  FORMALES FÁCTICAS
OBJETO DE ESTUDIO - Estudian entes formales, ideales o conceptuales
- Dichos entes son postulados hipotéticamente (construidos, propuestos, presupuestos o definidos) por los científicos que los estudian.
- Estudia el mundo de los hechos (Desde las galaxias a las partículas subatómicas).
- Tales hechos se asumen que tienen existencia con independencia de los científicos y de las comunidades que los estudian, aunque puedan tener interacciones con ellos.
MODO DE VALIDACIÓN - Parten de axiomas o postulados y a partir de ellos demuestran teoremas
- Los axiomas son relativos al contexto en el cual se opera.c
- No requieren de cotejo empírico o experimentación.
- Sus conclusiones adquieren grado de certeza
- Se trabaja a partir de las consecuencias observacionales que se derivan de las conjeturas o hipótesis propuestas.
- Juzgan sobre su adecuación al trozo de realidad que pretenden describir o explicar.
- El resultado favorable es provisional sujeto a corrección y revisión.
OBJETIVO QUE PERSIGUE - Buscan la coherencia interna.
- Busca la verdad lógica y necesaria.
- Procura describir y explicar hechos y realidades ajenas a ellas mismas.
- Persiguen la verdad material o contingente.

El Premio Nobel de QuímicaIlya Prigogine, propone superar la dicotomía entre la cultura de las ciencias humanísticas por un lado y el de las ciencias exactas por el otro porque el ideal de la ciencia es el de un esquema universal e intemporal, mientras que las ciencias humanas se basan en un esquema histórico ligado al concepto de situaciones nuevas que se superponen.13 14

Construcción de la ciencia

A lo largo de los siglos la ciencia viene a constituirse por la acción e interacción de tres grupos de personas:15

Unidad del edificio científico según Linneo y Diderot
  • Los artesanos, constructores, los que abrían caminos, los navegantes, los comerciantes, etc. resolvían perfectamente las necesidades sociales según una acumulación de conocimientos cuya validez se mostraba en el conocimiento y aplicación de unas reglas técnicas precisas fruto de la generalización de la experiencia sobre un contenido concreto.16
  • Los filósofos mostraban unos razonamientos que «extendían el dominio de las verdades demostrables y las separaba de la intuición|./... La uniformidad del Ser sobrevivió en la idea de que las leyes básicas han de ser independientes del espacio, del tiempo y de las circunstancias».15
Platón postuló que las leyes del universo tenían que ser simples y atemporales. Las regularidades observadas no revelaban las leyes básicas, pues dependían de la materia, que es un agente de cambio. Los datos astronómicos no podrían durar siempre. Para hallar los principios de ellos hay que llegar a los modelos matemáticos y «abandonar los fenómenos de los cielos».17
Aristóteles valoró la experiencia y la elaboración de conceptos a partir de ella mediante observaciones;18 pero la construcción de la ciencia consiste en partir de los conceptos para llegar a los principios necesarios del ente en general.19 Fue un hábil observador de «cualidades» a partir de las cuales elaboraba conceptos y definiciones, pero no ofreció ninguna teoría explícita sobre la investigación. Por eso su ciencia ha sido considerada «cualitativa» en cuanto a la descripción pero platónica en cuanto a su fundamentación deductiva.20 Para Aristóteles el valor de la experiencia se orienta hacia teorías basadas en explicaciones «cualitativas», y a la búsqueda de principios (causas) cada vez más generales a la búsqueda del principio supremo del que se «deducen» todos los demás. Por eso el argumento definitivo está basado en la deducción y el silogismo.21
Esta ciencia deductiva a partir de los principios,d es eficaz como exposición teórica del conocimiento considerado válido, pero es poco apta para el descubrimiento.15
Leonardo da Vinci: El hombre es el centro en la cultura humanista del Renacimiento
El sistema solar de Tycho Brahe. El sol y la luna giran alrededor de la tierra, pero los planetas giran alrededor del sol
  • Sobre la base de toda la tradición mantenida por los grupos anteriores, los científicos de la ciencia moderna: difieren de los filósofos por favorecer lo específico y experimental y difieren de los artesanos por su dimensión teórica.
Su formación como grupo y eficacia viene marcada a partir de la Baja Edad Media, por una fuerte reacción antiaristotélicae y, en el Renacimiento, por un fuerte rechazo al argumento de autoridad y a la valoración de lo humano con independencia de lo religioso. Son fundamentales en este proceso, los nominalistasGuillermo de Ockham y la Universidad de Oxford en el siglo XIV; en el RenacimientoNicolás de CusaLuis VivesErasmoLeonardo da Vinci etc.; los matemáticos renacentistas, TartagliaStevinCardano o Vieta y, finalmente, Copérnico y Tycho Brahe en astronomía.f Ya en el XVII Francis Bacon, y Galileo promotores de la preocupación por nuevos métodos y formas de estudio de la Naturaleza y valoración de la ciencia, entendida esta como dominio de la naturaleza22 y comprendiéndola mediante el lenguaje matemático.23
A partir del siglo XVII se constituye la ciencia tal como es considerada en la actualidad, con un objeto y método independizado de la filosofía.
La órbita clásica de Kepler. La órbita es elíptica. El movimiento de la tierra no es uniforme. El cielo clásico circular y de movimientos uniformes, perfecto, es definitivamente superado con las leyes de Kepler.
En un punto fue necesaria la confrontación de dos sistemas (Descartes-Newton) contemporáneos en la concepción del mundo natural:24
  • DescartesPrincipia philosophiae (1644), a pesar de su indudable modernidad, mantiene la herencia de la filosofía anterior anclada en las formas divinas propone un método basado en la deducción a partir de unos principios, las ideas innatas, formas esenciales y divinas como «principios del pensar».25 El mundo es un «mecanismo» determinista regido por unas leyes determinadas que se pueden conocer como ciencia mediante un riguroso método de análisis a partir de intuiciones evidentes. Es la consagración definitiva de la nueva ciencia, el triunfo del antiaristotelismo medieval, la imagen heliocéntrica del mundo, la superación de la división del universo en mundo sublunar y supralunar en un único universo mecánico.
  • NewtonPrincipia Mathematica philosophiae naturalis, (1687). Manteniendo el espíritu anterior sin embargo realiza un paso más allá: el rechazo profundo a la hipótesis cartesiana de los vórtices. La ciencia mecanicista queda reducida a un cálculo matemático a partir de la mera experiencia de los hechos observados sobre un espacio-tiempo inmutable.
Tanto uno como otro daban por supuesto la exactitud de las leyes naturales deterministas fundadas en la voluntad de Dios creador. Pero mientras el determinismo de Descartes se justifica en el riguroso método de ideas a partir de hipótesis sobre las regularidades observadas, Newton constituía el fundamento de dichas regularidades y su necesidad en la propia «observación de los hechos». Mientras uno mantenía un concepto de ciencia «deductiva», el otro se presentaba como un verdadero «inductivista», Hypotheses non fingo.

Método hipotético-deductivo

Una de las grandes aportaciones de Galileo Galileig a la ciencia consistió en combinar lógicamente la observación de los fenómenos con dos métodos desarrollados en otras ramas del conocimiento formal: la hipótesis y la medida.26 Supone el origen del método experimental que él llamó «resolutivo-compositivo», y ha sido muchas veces considerado con el nombre de «hipotético-deductivo» como prototipo del método científico e independiente del método empírico-analítico. Según Ludovico Geymonat la lógica empírica se caracteriza por tres métodos estructurados en un todo:

Inductivismo

Sir Francis Bacon, uno de los promotores del inductivismo como método científico
Círculo empírico

El inductivismo considera el conocimiento científico como algo objetivo, medible y demostrable, a partir solamente de procesos de experimentación observables en la naturaleza a través de nuestros sentidos. Por lo tanto, los inductivistas están preocupados por la base empírica del conocimiento.27

Esta filosofía de la ciencia comienza a gestarse durante la revolución científica del siglo XVII, y se consolida definitivamente como paradigma del método científico por la fundamental obra de Isaac NewtonFrancis Bacon insistió en que para comprender la naturaleza se debía estudiar la naturaleza misma, y no los antiguos escritos de Aristóteles. Así, los inductivistas comenzaron a renegar de la actitud medieval que basaba ciegamente sus conocimientos en libros de los filósofos griegos y en la Biblia.27

El inductivismo gozó de una enorme aceptación hasta buena parte del siglo XX, produciendo enormes avances científicos desde entonces.27 Sin embargo, con la crisis de la ciencia moderna surge el Problema de la inducción, que lleva al ocaso de este paradigma.

Crisis de la ciencia moderna

A pesar del indudable progreso de la ciencia durante los siglos XVII, XVIII y XIX seguía en pie la cuestión del fundamento racional de la misma sobre dos justificaciones divergentes:

  • El racionalismo que fundamenta el método hipotético-deductivo: la ley científica se justifica en una deducción teórica a partir de una hipótesis o teorías científicas.
  • El empirismo que fundamenta el método inductivo: la ley científica se justifica en la mera observación de los hechos.

El problema es planteado de modo definitivo por Kant respecto a la distinción entre juicios analíticos y sintéticos; la posibilidad de su síntesis, como juicios sintéticos a priori, considerados como los juicios propios de la ciencia, permanecía en la sombra sin resolver:

VERDAD CONDICIÓN ORIGEN JUICIO EJEMPLO
Verdad de hecho Contingente y particular A posteriori; depende de la experiencia Sintético: amplía el conocimiento. El predicado no está contenido en la noción del sujeto Tengo un libro entre las manos.
Está saliendo el sol.
Verdad de razón Necesaria y universal A priori; no depende de la experiencia Analítico: el predicado se encuentra en la noción del sujeto. No se amplía el conocimiento Todos los A son B → Si «algo» (x) es A entonces ese algo (x) es B
Si  a \cdot a = a^2 entonces  \sqrt a^2 = a
Verdad científica Universal y necesaria A priori; no depende de la experiencia, pero únicamente se aplica a la experiencia Sintético a priori: amplía el conocimiento. Solo aplicable a los fenómenos Si a y b son cuerpos → a y b experimentan entre sí una fuerza...
Los cuerpos se atraen en razón directa de sus masas y en razón inversa al cuadrado de sus distancias.

¿Cómo y por qué la Naturaleza en la experiencia se somete a las «reglas lógicas de la razón» y a las matemáticas?

Los matemáticos se dividieron en intuicionistas y logicistas.

Los intuicionistas consideran la matemática un producto humano y que la existencia de un objeto es equivalente a la posibilidad de su construcción, por lo que no admitían el axioma del tertio excluso.28 El argumento A \lor \lnot A; \lnot \lnot A \vdash A no puede ser tomado como lógica y formalmente válido sin restricción. Todo objeto lógico ha de poder ser previamente construido, lo que plantea especiales problemas lógicos para la negación. ¿Qué objeto es \lnot A?h Por ello consideraron las verdades de la ciencia probabilísticas, algo así como: «hay razones para considerar verdadero»... Rechazando algunos teoremas y métodos de Georg Cantor.15 El empirismo de David Hume mantiene su vigencia en la no-realidad de los universales ahora matemáticamente tratados como conjuntos.

Por su parte los formalistas pretendieron construir la traducción posible de los contenidos de la ciencia a un lenguaje lógico uniforme y universal que, como «método unificado de cálculo» hiciera de la ciencia un logicismo perfecto.29 Tal venía a ser el programa de Hilbert: formalización perfecta de la lógica-matemática, capaz de figurar la realidad mundana debidamente formalizada en un sistema perfecto.i

Concepto de distancia en el espacio de Euclides

El programa de Hilbert se vino definitivamente al traste cuando Kurt Gödel (1931) demostró los teoremas de incompletitud, haciendo patente la imposibilidad de un sistema lógico perfecto.j

Por otro lado la mecánica cuántica en su expresión matemática abre una brecha entre espacio-tiempo y materia y salva el tradicional abismo entre el observador y la realidad por caminos que traen conturbados a los científicos y han sumido a los filósofos en una gran confusión.30 15 En definitiva:

  • Matemáticamente: Si un sistema es completo no es decidible. Si es decidible, no es completo.
  • Físicamente: La energía aparece como discontinua; las partículas se manifiestan fenoménicamente, según circunstancias, como tales partículas o como ondas. El espacio y el tiempo pierden el carácter de absoluto de la mecánica clásica de Newton; etc.
Concepto de distancia en el espacio de Minkoski

En 1934 Karl Popper publica La lógica de la investigación científica, que pone en cuestión los fundamentos del inductivismo científico, proponiendo un nuevo criterio de demarcación de la ciencia así como una nueva idea de verificación por medio de la falsación de teorías y una aproximación asintótica de la verdad científica con la realidad.

En 1962 Kuhn propone un nuevo modo de concebir la construcción de la ciencia bajo el concepto de «cambio de paradigma científico», que hiciera posible el no tener que considerar necesariamente falsas todas las teorías obsoletas de la ciencia anterior.

En 1975 Feyerabend publica un polémico libro, CONTRA EL MÉTODO: Esquema de una teoría anarquista del conocimiento. Tras analizar críticamente el proceso seguido por Galileo en su método resolutivo-compositivo, rompe el «paradigma» del método hipotético-deductivo considerado como el fundamento del método científico como tal.

El propio progreso de las ciencias aporta pruebas de que las regularidades de la naturaleza están llenas de excepciones.k La creencia en leyes necesarias y la creencia en el determinismo de la Naturaleza, que inspiró tanto a los griegos como a la Ciencia Moderna hasta el siglo XX, así como el hecho de que la observación se justifica a partir de la experiencia, se ponen seriamente en cuestión.;;15 31 l m

Posmodernidad

La cuestión entre realismo y empirismo ../.. sigue tan viva como siempre..../... [Los investigadores] estudian eventos particulares, realizan entrevistas, invaden los laboratorios, desafían a los científicos, examinan sus tecnologías, sus imágenes, sus concepciones, y exploran el gran antagonismo que a menudo existe entre disciplinas, escuelas y grupos de investigación concretos. Resumiendo sus resultados, podemos decir que el problema no es ahora el de cómo articular el monolito CIENCIA, sino el de qué hacer con la desparramada colección de esfuerzos que han ocupado su lugar.15

Lyotard en su obra «La condición postmoderna: Informe sobre el saber» se pregunta: ¿Sigue siendo la ciencia el gran argumento de autoridad en el reconocimiento de la verdad?32 La conclusión postmoderna es que se asumió el criterio de competencia como «saber adecuado a lo concreto» por parte de los expertos. La ciencia no es una cosa, es «muchas»; no es algo cerrado sino abierto; no tiene un método, sino muchos; no está hecha, sino se hace. Su dinámica no es solo la investigación base, sino su aplicación técnica, así como su enseñanza y su divulgación. Por ello las objeciones y las alternativas a cada investigación concreta y en cada campo concreto de la misma, se suscitan y abren según grupos particulares de intereses que no siempre son precisamente científicos. La dependencia económica de la investigación puede convertirla en un producto más en «oferta en el mercado», o ser valorada únicamente como discurso performativo.33

La ciencia se ha convertido en un fenómeno que afecta globalmente a toda la Humanidad:

  • Por la mayor educación social generalizada en todas las sociedades del mundo.
  • Por la influencia de la tecnología que la hace aplicable a la realidad en poco tiempo.
  • Por los medios de comunicación, que facilitan la rápida divulgación y vulgarización de los conocimientos.
  • Porque se convierte así en un instrumento de poder, económico, político y cultural.
  • Etc.

El problema de su fundamentación y construcción deviene un problema filosófico en el llamado posmodernismo que tiene una conciencia clara: La verdad no es necesaria ni universal, sino producto humano y por tanto cambiante y contingente. La propia ciencia, la filosofía, la literatura o el arte en general y la propia dinámica cultural y social, desbordarán siempre el discurso científico abriendo horizontes de nuevos metadiscursos respecto a la propia ciencia, a los contenidos culturales y sociales, a la vida cotidiana, el ejercicio del poder o la acción moral y política.34 35

La pregunta, explícita o no, planteada por el estudiante profesionalista, por el Estado o por la institución de enseñanza superior, ya no es ¿es eso verdad?, sino ¿para qué sirve? En el contexto de la mercantilización del saber, esta última pregunta, las más de las veces, significa: ¿se puede vender? Y, en el contexto de argumentación del poder ¿es eficaz? Pues la disposición de una competencia performativa parecía que debiera ser el resultado vendible en las condiciones anteriormente descritas, y es eficaz por definición. Lo que deja de serlo es la competencia según otros criterios, como verdadero/falso, justo/injusto, etc., y, evidentemente, la débil performatividad en general.

Jean François Lyotard. La condición posmoderna. op. cit. p.94

El resultado es que es posible adquirir conocimiento y resolver problemas combinando elementos de ciencia con opiniones y procedimientos que prima facie son no-científicos.15

Construcción del saber científico

Visión del Universo en la Antigüedad y Edad Media

Demarcación de la ciencia

¿Qué distingue al conocimiento de la superstición, la ideología o la pseudo-ciencia? La Iglesia Católica excomulgó a los copernicanos, el Partido Comunista persiguió a los mendelianos por entender que sus doctrinas eran pseudocientíficas. La demarcación entre ciencia y pseudociencia no es un mero problema de filosofía de salón; tiene una importancia social y política vital.

Imre Lakatos.La metodología de los programas de investigación científica. op. cit. p.9

Conocer y saber

Se hace necesario diferenciar, de un modo técnico y formalizado36 los conceptos de conocer y saber, por más que, en el lenguaje ordinario, se usen a veces como sinónimos.

El acto de conocer y su producto, el conocimiento, consisten en adquirir una creencia basada en la experiencia y en la memoria, y es algo común en la evolución de los seres vivos naturales concebidos sistemas, como por ejemplo los así llamados «animales superiores».37 Saber, por su parte requiere, además de lo anterior, una justificación fundamental; es decir un engarce en un sistema coherente de significado y de sentido, fundado en lo real y comprendido como realidad por la razón; más allá de un conocimiento en el momento presente o fijado en la memoria como único. Un sistema que hace de este hecho de experiencia algo con entidad consistente. Las cosas ajenas a la razón no pueden ser objeto de ciencia.

... ciencia es la opinión verdadera acompañada de razón. (δοξα άληθης μετα λογου)

Platón.Teeteto. Trad. Juan B. Bergua.Madrid. Ediciones Ibéricas. 1960. p. 122 y 223

Platón, en ese texto, reconoce que los elementos simples son por ello «irracionales», puesto que no se puede dar razón de ellos.38 Y luego en el «Sofista» intenta ir más allá de lo elemental al fundamento del mismo, a la «Idea» (Logos), la racionalidad que sirve de fundamento o, como dice Zubiri, que hace posible el «verdadear» de las cosas y los hechos como realidad.39 El saber de la verdad, así concebido, es un «hecho abierto» como proceso intelectual y no un logro definitivo,40 Un conjunto de razones y otros hechos independientes de mi experiencia que, por un lado, ofrecen un «saber qué» es lo percibido como verdad y, por otro lado, orientan y definen nuevas perspectivas del conocimiento y de la experiencia posible.41

Fundamentalmente caracterizan la construcción del saber científico actual los rasgos siguientes:

  • Investigación de un cambio de problemática, teórica o práctica, en un área o ámbito científico determinado con un núcleo teórico consolidado.42
  • De un equipo generalmente financiado por una Institución Pública, Fundación privada o Empresa particularn
  • Dirigida por alguien de reconocido prestigio como experto en el ámbito de la investigación, sea individuo o equipo investigador
  • Siguiendo un método de investigación cuidadosamente establecido
  • Publicado en revistas especializadas
  • Incorporadas y asumidas las conclusiones en el quehacer de la comunidad científica del ámbito que se trate como elementos dinámicos de nuevas investigaciones que amplían la problemática inicial generando nuevas expectativas, predicciones, etc. o, dicho en términos propios, el resultado es un programa teóricamente progresivo.43
  • El reconocimiento suele convertirse en derecho de patente durante 20 años cuando tiene una aplicación práctica o técnica

Observación de los hechos

Observación del cielo

Si, persuadidos de estos principios, hacemos una revisión de las bibliotecas, ¡qué estragos no haremos! Si tomamos en las manos un volumen de teología, por ejemplo, o de metafísica escolástica, preguntemos: ¿contiene algún razonamiento abstracto sobre la cantidad o los números? No. ¿contiene algún raciocinio experimental sobre cuestiones de hecho o de existencia? No. Echadlo al fuego; pues no contiene más que sofistería y embustes.

David Hume. Investigación sobre el entendimiento humano. Tercera parte.

La cita de Hume ilustra el pensamiento en la Edad Moderna y fue importante en la constitución de la ciencia moderna.44 Sin embargo en la actualidad es un problema fundamental del estatus de la ciencia ¿qué es un raciocinio experimental sobre cuestiones de hecho o de existencia?

Newton afirmaba «no hago suposiciones» y estaba convencido de que su teoría estaba apoyada por los hechos. Pretendía deducir sus leyes a partir de los fenómenos observados por Kepler. Pero tuvo que introducir una teoría de las perturbaciones para poder sostener que los movimientos de los planetas eran elípticos, y en realidad no supo justificar la gravedad. Sin embargo, antes de Einstein la mayoría de los científicos pensaban que la física de Newton estaba fundamentada en la realidad de los hechos observados.o Hoy se admite sin ambages que no se puede derivar válidamente una ley de la naturaleza a partir de un número finito de hechos.45

Karl Popper propuso un criterio de falsabilidad que contradice la realidad de la construcción de la ciencia cuando las teorías no suelen derrumbarse por una sola observación o un experimento crucial que las contradiga. Normalmente se recurre a aceptar anomalías, o se generan hipótesis ad hoc.

Lakatos, discípulo de Popper, indicó que la historia de la ciencia está repleta de exposiciones sobre cómo los experimentos cruciales supuestamente destruyen a las teorías. Pero tales exposiciones suelen estar elaboradas mucho después de que la teoría haya sido abandonada. Si Popper hubiera preguntado a un científico newtoniano, anterior a la Teoría de la Relatividad, en qué condiciones experimentales abandonarían la teoría de Newton, algunos científicos newtonianos hubieran recibido la misma descalificación que él mismo otorgó a algunos marxistas y psicoanalistas.46

Según Kuhn la ciencia avanza por medio de revoluciones cuando se produce un cambio de paradigma, que no depende de la observación de los hechos sino que constituye un cambio de referencia de un campo o área determinada de la investigación científica en una teoría más general que abarca un área mucho más amplia.47

Sistema Solar según la teoría newtoniana

Un campo o área de investigación siempre tiene su referencia en una teoría general, (Física clásica, Teoría de la Relatividad, Mecánica cuántica, Psicoanálisis, Marxismo) dotados de un núcleo fundamental característico firmemente establecido y defendido en una tradición científica estable, aun cuando presenten irregularidades y problemas no resueltos. En este sentido tomar la falsación de Popper en puridad equivale a tener por seguro que todas las teorías nacen ya refutadas, lo que rompería la posibilidad del progreso y unidad de la ciencia.47

Lo que constituye como «científicas» a las teorías no es su «verdad demostrada» que no lo es, sino su capacidad de mostrar nuevas verdades que surgen al seguir ofreciendo nuevas vías de investigación, suscitando hipótesis nuevas y abriendo cauces nuevos en la visión general del campo que se trate. Es solo al final de un amplio proceso de construcción y reconstrucción de una teoría cuando puede surgir una nueva teoría o paradigma o programa de investigación más general que explica con una nueva óptica los mismos hechos explicados por la primera teoría anterior al considerarlos en un ámbito de visión del mundo más amplio. La vieja teoría dejará de tener entonces el reconocimiento como ciencia actual; porque ha dejado ya de ser referente como medio para la ampliación del conocimiento. Lo que nos les hace perder el valor científico que han mostrado durante bastante tiempo y el carácter histórico de su aportación a la construcción de la ciencia.

Universo evolutivo en expansión según la teoría del Big Bang del belga Georges Lemaître.

Los hechos observados y las leyes que fundaban la Teoría de Newton seguirán siendo los mismos fenómenos terrestres de la misma manera que lo hacían en el siglo XVIII; y en ese sentido seguirán siendo verdaderos. Pero su interpretación tienen otro sentido cuando se los considera en el marco más amplio de la «teoría de la relatividad» en la quedan incluidos como un caso concreto. La verdad experimental de la observación de hechos de ver todos los días salir el sol por oriente y ponerse por occidente sigue siendo la misma. Como lo son las anotaciones del movimiento de los planetas hechas por Ptolomeo, como por Copérnico o Tycho Brahe. Pero de la misma forma que las interpretaciónes de tales observaciones reflejadas en el marco de la teoría geocéntrica de Aristóteles o de Ptolomeo explicaban mejor y ofrecían visiones diferentes respecto a las «astrologías» que había en su momento histórico y cultural, a su vez la interpretación heliocéntrica de Copérnico o Tycho Brahe enriquecieron enormemente la visión de los cielos respecto a las anteriores e hicieron posible la visión de Kepler y la Teoría de Newton. La interpretación de los mismos datos de observación ofrecen, sin embargo, en la Teoría de la relatividad elementos nuevos que sugieren nuevas hipótesis de investigación que amplían la posibilidad de nuevas observaciones y nuevas hipótesis. La última teoría está en continua ampliación y transformación como paradigma científico; las anteriores o prácticamente ya no tienen nada que decir como no sea como objeto de estudio histórico y de referencia en la evolución y construcción del saber científico en tanto que fueron paradigmas en su tiempo o tienen sentido en una aplicación concreta en un ámbito específicamente acotado como caso concreto de la teoría fundamental. Tal es el caso de la «utilidad» de la teoría de Newton cuando se trata de movimientos y espacios y tiempos de ciertas dimensiones. De la misma forma que los arquitectos en sus proyectos consideran la tierra «como si fuera plana». Pues en las dimensiones que abarcan sus proyectos la influencia de la redondez de la tierra es despreciable.p

Ley científica

En la arquitectura de la ciencia el paso fundamental está constituido por la ley. Es la primera formulación científica como tal. En la ley se realiza el ideal de la descripción científica; se consolida el edificio entero del conocimiento científico: de la observación a la hipótesis teórica-formulación-observación-experimento (ley científica), teoría general, al sistema. El sistema de la ciencia es o tiende a ser, en su contenido más sólido, sistema de las leyes.48

Diferentes dimensiones que se contienen en el concepto de ley:49

  • La aprehensión meramente descriptiva
  • Análisis lógico-matemático
  • Intención ontológica

Desde un punto de vista descriptivo la ley se muestra simplemente como una relación fija, entre ciertos datos fenoménicos. En términos lógicos supone un tipo de proposición, como afirmación que vincula varios conceptos relativos a los fenómenos como verdad.q En cuanto a la consideración ontológica la ley como proposición ha sido interpretada históricamente como representación de la esenciapropiedades o accidentes de una sustancia. Hoy día se entiende que esta situación ontológica se centra en la fijación de las constantes del acontecer natural, en la aprehensión de las regularidades percibidas como fenómeno e incorporadas en una forma de «ver y explicar el mundo».50

El problema epistemológico consiste en la consideración de la ley como verdad y su formulación como lenguaje y en establecer su «conexión con lo real», donde hay que considerar dos aspectos:

  • El término de lo real hacia el cual intencionalmente se dirige o refiere la ley, es decir, la constancia de los fenómenos en su acontecer como objeto de conocimiento.
Generalmente, y de forma vulgar, se suele interpretar como «relación causa/efecto» o «descripción de un fenómeno». Se formula lógicamente como una proposiciónhipotética en la forma: Si se da a, b, c.. en las condiciones, h, i, j... se producirá s, y, z...51 r

Teoría científica

La teoría científica representa el momento sistemático explicativo del saber propio de la ciencia natural; su culminación en sentido predictivo.

Los años 50 del siglo XX supusieron un cambio de paradigma en la consideración de las «teorías científicas».

Según Mario Bunge en aras de un inductivismo dominante,52 con anterioridad se observaba, se clasificaba y se especulaba.

Ahora en cambio:

  • Se realza el valor de las teorías con la ayuda de la formulación lógico-matemática.
  • Se agrega la construcción de sistemas hipotético-deductivos en el campo de las ciencias socialess
  • La matemática se utilizaba fundamentalmente al final para comprimir y analizar los datos de investigaciones empíricas, con demasiada frecuencia superficiales por falta de teorías, valiéndose casi exclusivamente de la estadística, cuyo aparato podía encubrir la pobreza conceptual.

En definitiva, concluye Bunge:

Empezamos a comprender que el fin de la investigación no es la acumulación de hechos sino su comprensión, y que ésta solo se obtiene arriesgando y desarrollando hipótesis precisas que tengan un contenido empírico más amplio que sus predecesoras.

Bunge, M. op. Cit. p. 9-11; Lakatos. op. cit. 123-133

Construcción de modelos

Modelo de una colisión de partículas

El comienzo de todo conocimiento de la realidad comienza mediante idealizaciones que consisten en abstraer y elaborar conceptos; es decir, construir un modelo acerca de la realidad. El proceso consiste en atribuir a lo percibido como real ciertas propiedades, que frecuentemente, no serán sensibles. Tal es el proceso de conceptualización y su traducción al lenguaje.

Eso es posible porque se suprimen ciertos detalles destacando otros que nos permiten establecer una forma de ver la realidad, aun sabiendo que no es exactamente la propia realidad. El proceso natural sigue lo que tradicionalmente se ha considerado bajo el concepto de analogía. Pero en la ciencia el contenido conceptual solo se considerará preciso como modelo científico de lo real, cuando dicho modelo es interpretado como caso particular de un modelo teórico y se pueda concretar dicha analogía mediante observaciones o comprobaciones precisas y posibles.

El objeto modelo es cualquier representación esquemática de un objeto. Si el objeto representado es un objeto concreto entonces el modelo es una idealización del objeto, que puede ser pictórica (un dibujo p. ej.) o conceptual (una fórmula matemática); es decir, puede ser figurativa o simbólica. La informática ofrece herramientas para la elaboración de objetos-modelo a base del cálculo numérico.

La representación de una cadena polimérica con un collar de cuentas de colores es un modelo análogo o físico; un sociograma despliega los datos de algunas de las relaciones que pueden existir entre un grupo de individuos. En ambos casos, para que el modelo sea modelo teórico debe estar enmarcado en una estructura teórica. El objeto modelo así considerado deviene, en determinadas circunstancias y condiciones, en modelo teórico.

Un modelo teórico es un sistema hipotético-deductivo concerniente a un objeto modelo que es, a su vez, representación conceptual esquemática de una cosa o de una situación real o supuesta real.53

Los mecanismos hipotéticos deberán tomarse e serio, como representando las entrañas de la cosa, y se deberá dar prueba de esta convicción realista (pero al mismo tiempo falible) imaginando experiencias que puedan poner en evidencia la realidad de los mecanismos imaginados. En otro caso se hará literatura fantástica o bien se practicará la estrategia convencionalista, pero en modo alguno se participará en la búsqueda de la verdad,

Bunge, op. Cit. p. 19

El modelo teórico siempre será menos complejo que la realidad que intenta representar, pero más rico que el objeto modelo, que es solo una lista de rasgos del objeto modelizado. Bunge esquematiza estas relaciones de la siguiente forma:

Cosa o hecho Objeto-modelo Modelo teórico
Deuterón Pozo de potencial del protón neutrón Mecánica cuántica del pozo de potencia
Soluto en una solución diluida Gas perfecto Teoría cinética de los gases
Tráfico a la hora punta Corriente continua Teoría matemática de la corriente continua
Organismo que aprende Caja negra markoviana Modelo del operador lineal de Bush y Mosteller
Cigarras que cantan Colección de osciladores acoplados Mecánica estadística de los osciladores acoplados

Cualquier objeto modelo puede asociarse, dentro de ciertos márgenes, a teorías generales para producir diversos modelos teóricos. Un gas puede ser considerado como un «enjambre de partículas enlazadas por fuerzas de Van der Waals», pero puede insertarse tanto en un marco teórico de la teoría clásica como en el de la teoría relativista cuántica de partículas, produciendo diferentes modelos teóricos en ambos casos.

Teoría

Existen dos formas de considerar las teorías:

  • Teorías fenomenológicas. Tratan y se limitan a «describir» fenómenos, estableciendo las leyes que establecen sus relaciones mutuas a ser posible cuantificadas. Procuran evitar cualquier contaminación «metafísica» o «esencial» tales como las causas, los átomos o la voluntad, pues el fundamento consiste en la observación y toma de datos con la ayuda «únicamente» de las variables observables exclusivamente de modo directo. Tal es el ideal del empirismoFrancis BaconNewtonneopositivismo. La teoría es considerada como una caja negra.
  • Teorías representativas, por el contrario, pretenden establecer la «esencia» o fundamento último que justifica el fenómeno y las leyes que lo describen. Tal es el ideal del racionalismo y la teoría de la justificaciónDescartesLeibniz. En relación con lo anterior Bunge propone considerarla como «caja negra traslúcida».54
La caja negra

El hecho de considerar las formas teóricas como «caja negra» o «caja negra traslúcida» obliga a hacer alguna aclaración. No se trata de una disyunción exclusiva. No se trata de clases lógicas excluyentes sino más bien de un planteamiento metodológico. Su referencia es hacia el modo como interpretamos la teoría, si «se atiende a lo que ocurre» en forma de descripción de lo que ocurre, o si, además, se refiere a «por qué ocurre lo que ocurre» intentando justificar un mecanismo.

Esquema de caja negra

Las teorías fenomenológicas no son jamás «puras negras», por más que se intente justificar lo contrario con el término fenomenológico:

  • Pues no pueden prescindir totalmente de términos que superan con creces las «variables externas» observables, sean macroscópicas o microscópicas. Por ejemplo: la teoría de los circuitos eléctricos es ciertamente una teoría de caja negra, pues todo elemento del circuito es considerado como una unidad carente de estructura interna.55 t Sin embargo tal teoría de circuitos eléctricos habla de «corriente» y de «voltaje» que no son variables observables (como fenómenos en sí propiamente dichos). Su «observabilidad» se infiere de la lectura de unos valores leídos en unos aparatos indicadores previamente diseñados conforme a una teoría que interpreta que dichos valores «representan» valores de «corriente» o de «voltaje» como conceptos teóricos.
  • La ciencia no puede limitarse a una mera descripción o lectura de dipositivos meramente descriptivos. Ninguna teoría así recibiría el nombre de «teoría científica», pues la ciencia necesariamente exige explicaciones, es decir que ha de poder subsumir la enunciación de casos singulares en enunciados generales.
  • Las teorías fenomenológicas incluyen de manera necesaria, como substrato de creencia previa, la idea de causa/efecto. Pues aun cuando se ignore el mecanismo interior de la caja negra, no se puede prescindir del hecho de que los imputs guardan una relación causal con los outputs.

Por otro lado la «caja negra» presenta grandes ventajas en el progreso de la ciencia, al evitar la especulación que tantas veces ha hecho perder el sentido del horizonte a la ciencia en tiempos pasados y al mismo tiempo al no ser incompatible con la causalidad ni tampoco con la «representación». En definitiva es una cuestión de grado, de forma que:

El hecho de que ciertos problemas no puedan enunciarse en la estructura de las teorías fenomenológicas no significa que las teorías de la caja negra no proporcionen una explicación como a menudo se oye. Siempre que un enunciado singular se deduce de enunciados de leyes y circunstancias, hay explicación científica. Las teorías fenomenológicas proporcionan, pues, explicaciones científicas. Pero las explicaciones científicas pueden ser más o menos profundas. Si las leyes invocadas en la explicación son justamente leyes de coexistencia y sucesión, la explicación será superficial. Este es el caso de la explicación de un hecho de un individuo sobre la base de que siempre hace tales cosas, o la explicación de la compresión de un gas según el aumento de presión en términos de la ley de Boyle. Necesitamos a menudo tales explicaciones superficiales, pero también necesitamos explicaciones profundas tales como las que se presentan en términos de la constitución y estructura de un gas, los rasgos de la personalidad de un individuo y así sucesivamente.

Bunge, M. Teoría y realidad. op. cit. p. 77-78

Problema de la inducción

Según el sentido de la teoría de la justificación la ciencia ha de consistir en proposiciones probadas.

El falsacionista ingenuo insiste en que si tenemos un conjunto inconsistente de enunciados científicos en primer lugar debemos seleccionar entre ellos: 1) Una teoría que se contrasta (que hará de nuez); 2) Un enunciado básico aceptado (que servirá de martillo) y el resto será conocimiento básico que no se pone en duda (y que hará las funciones de yunque). Y para aumentar el interés de esta situación hay que ofrecer un método para «endurecer» el «martillo» y el «yunque» de modo que podamos partir la nuez realizando un «experimento crucial negativo». Pero las conjeturas ingenuas referentes a esta visión resultan demasiado arbitrarias y no ofrecen el endurecimiento debido.

Imre Lakatos. op. cit. p.130

El experimento no es una verificación de la teoría que lo sustenta como mostró Popper desnudando el problema de la inducción.

El inductivismo estricto fue considerado seriamente y criticado por muchos autores, desde BellarminoWhewell, y finalmente destruido por Duhem y Popper, aunque ciertos científicos y filósofos de la ciencia como Born, Achisnstein o Dorling aún creen en la posibilidad de deducir o inducir válidamente las teorías a partir de hechos (¿seleccionados?). Pero el declinar de la lógica cartesiana y en general, de la lógica psicologista, y la emergencia la lógica de Bolzano y Tarski decretó la muerte de la deducción a partir de los fenómenos.

Lakatos. op. cit. p. 219

Por otro lado las inferencias lógicas transmiten la verdad, pero no sirven para descubrir nuevas verdades.56

Las teorías generales no son directamente contrastables con la experiencia, sino solamente mediante casos particulares, con soluciones específicas mediante teorías específicas, como modelos teoréticos. Cuanto mayor sea la lógica que detente una teoría, menor será la contrastabilidad empírica. Esto quiere decir que teorías tan generales como la Teoría de la InformaciónMecánica clásica o mecánica cuántica solo pueden ser contrastadas respecto a modelos teóricos específicos en el marco de dichas teorías, teniendo en cuenta que no siempre es posible saber qué es lo que hay que corregir en el modelo cuando el contraste empírico fracasa o, si por el contrario es la propia teoría general la que contiene el error,57 teniendo muy presente la dificultad de poder asegurar que el valor de los datos manejados y obtenidos sean los correctos. Por ello la filosofía de la ciencia adquiere un carácter de investigación científica muy importante.58 59

Historia y progreso del conocimiento científico

Visión medieval del universo
Nicolás Copérnico rompe definitivamente la visión medieval.

Desde determinado punto de vista la descripción de la historia de la ciencia puede causar una visión compendiada de la historia en la que una teoría falsa es sustituida por una «verdadera», que será falsa cuando es sustituida por otra «verdadera». Tal es lo que ocurre si mantenemos una visión simplista de la ciencia como «conjunto de teorías cerradas» es decir que se sustentan por sí mismas en su contenido de verdad y se generan en una sucesión cuyo producto acabado es «una ciencia consolidada», producto de «Una Razón», si no absoluta, al menos humana, pero en tanto que verdadera y definitiva.

De hecho, una visión así se produce cuando la tesis más frecuente y constantemente repetida es que el método científico es una combinación de deducción e inducción, de matemática y experiencia. Tal idea se remonta a Galileo (o incluso más atrás, hasta los más grandes científicos de la Grecia clásica),60 calificada como inductivismo cuyo fundamento reside en considerar que los hechos justifican las teorías en el sentido de hacerlas verdaderas de forma definitiva y permanente.

Tal visión ha sido definitivamente superada por la crisis vivida durante el siglo XX al tener que considerar las teorías como «teorías abiertas».61

Teorías cerradas:

  • Rigurosamente formalizadas, o formalizables en lenguaje lógico-matemático.
  • Se basan en un determinado sistema de axiomas y reglas lógicas.
  • No necesitan tener referencia alguna a presuntas verdades intuitivas ajenas a dicho sistema.
  • Dos teorías diversas entre sí no pueden tener equivalencias puesto que se basan en sistemas primitivos lógicos diferentes.

La crisis de la ciencia del siglo XX por el contrario muestra la necesidad de teorías abiertas. No se trata de la idea de «sucesión descriptiva» sino de «el fundamento del progreso científico» entendido como proceso histórico. La actual epistemología representa un punto de inflexión importante en la visión de la historia de la ciencia como:

Evaluación del progreso objetivo de la ciencia entendido como cambios progresivos y regresivos de problemáticas para un conjunto estable de teorías científicas que ofrecen un marco o modelo teórico global.62

La historia de la ciencia deja de ser la historia de las teorías y se constituye en el planteamiento y consideración de «problemáticas comunes» a diversas teorías unidas en una continuidad de largo recorrido histórico y cultural. Dicha unidad encuentra su fundamento en un «marco conceptual común», una unidad cultural de lenguaje que ofrece una visión determinada acerca de un determinado ámbito del universo mundo, como interpretación del mismo, sobre la base de unas mismas reglas lógicas de interpretación de la experiencia. Las series más importantes de estas teorías científicas vienen caracterizadas por una «continuidad» en el tiempo; teorías que se relacionan en una unidad global dentro de en un ámbito suficientemente amplio de investigación del mundo. Vienen a suponer una cierta unidad conceptual y de visión general. Sobre estas unidades es sobre lo que se construye el progreso científico, pues es en el ámbito de estas donde se producen las transformaciones de «antiguas verdades» en «nuevas verdades» con independencia de cómo se interprete dicha transformación:

  • como «falsación de teoría concreta»: Popper.u
  • como una «ruptura epistemológica», Gaston Bachelard.
  • como una revolución o «cambio de paradigma», Kuhn.v
  • como evolución de «programas de investigación», Lakatos.63
  • como simple «anarquía de los métodos», Feyerabend.,w
  • como esbozo de posibilidades para la intelección posibilitante de lo real, Zubiri.64
  • como «symploké», Gustavo Bueno.
  • como genialidad deductiva de un investigador.65
  • como casualidad heurística de hecho.x

Cada uno de estos puntos de vista requiere su reflexión y nos muestra que el proceso no es tan simple como suele mostrarse en la historia de una «ciencia consolidada» como sucesión de teorías: una racionalización lógica y sucesiva de teorías que se sustituyen unas a otras de un modo lógico-constructivo.

La cuestión estriba en desplazar la idea de «una teoría que es refutada por hechos nuevos que se descubren» y considerar la explicación o interpretación de cómo se mantienen en unidad profunda y continua diversas teorías que comparten una misma visión conjunta, manteniendo diferencias de escuelas o autores claramente diferenciados y a veces opuestos en sus explicaciones. Esto explica la consistencia de las grandes visiones teóricas señaladas anteriormente con las distintas escuelas, posturas, y movimientos que dentro de la unidad diversifican las formas de comprensión de la realidad, es decir, cómo se mantienen las incongruencias e inconsistencias que unas teorías mantienen frente a otras compartiendo un núcleo fundamental de unión. Núcleo de unión continua que diversifica los modos y métodos de investigación como heurística negativa, que señala rutas de investigación que hay que evitar y heurística positiva que señala los caminos que se debe seguir. La heurística positiva y negativa suministra una definición primaria e implícita del «marco conceptual» (y por tanto del lenguaje) en el que se sitúa la problemática común. El reconocimiento de que la historia de la ciencia es la historia de los paradigmas o de los programas de investigación científica o de la anarquía de los métodos, en lugar de ser la historia de las teorías, puede por ello entenderse como una defensa parcial del punto de vista según el cual la historia de la ciencia es la historia de los marcos conceptuales o de los lenguajes científicos.66

La ciencia en su conjunto puede ser considerada como un «enorme programa de investigación» con una regla suprema como señaló Popper: Diseña conjeturas que tengan más contenido empírico que sus predecesoras.67 68

Terminología

Los términos modelohipótesisley y teoría tienen en la ciencia un significado diferente al que se les da en el uso del lenguaje corriente o vulgar.

Los científicos utilizan el término modelo para referirse a una serie de propiedades como idealización de una correspondencia con lo real; tales propiedades específicas se utilizan para construir las hipótesis que permiten realizar predicciones que puedan ser sometidas a prueba por experimentación u observación. Por tanto los resultados de los experimentos corresponden al modelo como regularidades de donde se obtienen las leyes que hacen posible la generalización para predicciones futuras.

Una hipótesis es una proposición que se considera provisionalmente como verdadera en función de una experimentación que confirme o rechace las consecuencias que de tal verdad puedan derivarse conforme a una teoría.

El uso coloquial de la palabra teoría suele referirse a ideas que aún no tienen un respaldo experimental. En contraposición, los científicos generalmente utilizan el término para referirse a un cuerpo de leyes o principios a través de los cuales se realizan predicciones acerca de fenómenos específicos.

Las predicciones científicas pretenden tener un sentido de realidad, pero siempre se realizan sobre los supuestos que se han considerado en el modelo. Por ello siempre pueden existir variables ocultas que no se han tenido en cuenta.

Esto explica la falibilidad de la ciencia tanto en sus observaciones como en las leyes generales y teorías que produce frente a un pretendido justificacionismo a ultranza. Esto es de especial relevancia para las ciencias cuyos modelos son idealizaciones muy pobres con respecto a lo real.y Otro ejemplo es el caso de las predicciones meteorológicas. Los modelos siempre suponen una idealización que no puede tener en cuenta todas las variables posibles, lo que no quita el valor a sus predicciones. Más complejo aún es cuando las predicciones se hacen sobre modelos sociales La ciencia avanza perfeccionando el conocimiento acerca de lo real y no estableciendo verdades definitivas.

Al mismo tiempo los lenguajes en los que se ha estructurado la noción de verdad y de los que habla la teoría de modelos son, por lo general, sistemas matemáticos. Las «cosas» representadas en dichos lenguajes son también sistemas matemáticos. Por esto, la teoría de modelos es una teoría semántica que pone en relación unos sistemas matemáticos con otros sistemas matemáticos. Dicha teoría nos proporciona algunas pistas con respecto a aquella semántica que pone en relación los lenguajes naturales con la realidad. Sin embargo, ha de tenerse siempre presente que no hay ningún sustituto matemático para los problemas genuinamente filosóficos. Y el problema de la verdad es un problema netamente filosófico.

Jesús Padilla Gálvez, op. cit. p. 229

Método científico

Cada ciencia, y aun cada investigación concreta, genera su propio método de investigación. En general, se define como método el proceso mediante el cual una teoría científica es validada o bien descartada. La forma clásica del método de la ciencia ha sido la inducción (formalizada por Francis Bacon en la ciencia moderna) y justificada por el método «resolutivo-compositivo» de Galileo, interpretado como hipotético-deductivo.

Karl Popper, tras criticar la idea de que los experimentos verifican las teorías que los sustentan como justificadas, plantea el problema de la inducción como argumento lógicamente inválido, proponiendo la idea del progreso de la ciencia como falsación de teorías.

En todo caso, cualquiera de los métodos científicos utilizados requiere los siguientes criterios:

  • La reproducibilidad, es decir, la capacidad de repetir un determinado experimento en cualquier lugar y por cualquier persona. Esto se basa, esencialmente, en la comunicación de los resultados obtenidos. En la actualidad éstos se publican generalmente en revistas científicas y revisadas por pares.
  • La falsabilidad, es decir, la capacidad de una teoría de ser sometida a potenciales pruebas que la contradigan. Según este criterio, se distingue el ámbito de lo que es ciencia de cualquier otro conocimiento que no lo sea: es el denominado criterio de demarcación de Karl Popper. La corroboración experimental de una teoría científicamente «probada» —aun la más fundamental de ellas— se mantiene siempre abierta a escrutinio (ver falsacionismo).
  • En las ciencias empíricas no es posible la verificación; no existe el «conocimiento perfecto», es decir, «probado». En las ciencias formales las deducciones lógicas o demostraciones matemáticas generan pruebas únicamente dentro del marco del sistema definido por ciertos axiomas y ciertas reglas de inferencia. Según el teorema de Gödel, no existe un sistema aritmético recursivo perfecto, que sea al mismo tiempo consistentedecidible y completo.

Existe una serie de pasos inherentes al proceso científico que, aunque no suelen seguirse en el orden aquí presentado, suelen ser respetados para la construcción y el desarrollo de nuevas teorías. Estos son:

El modelo atómico de Bohr, un ejemplo de una idea que alguna vez fue aceptada y que, a través de la experimentación, fue refutada.
  • Observación: registrar y examinar atentamente un fenómeno, generalmente dentro de una muestra específica, es decir, dentro de un conjunto previamente establecido de casos.
  • Descripción: detallar los aspectos del fenómeno, proponiendo incluso nuevos términos al respecto.
  • Hipótesis: plantear las hipótesis que expliquen lo observado en el fenómeno y las relaciones causales o las correlaciones correspondientes.
  • Experimentación: es el conjunto de operaciones o actividades destinadas, a través de situaciones generalmente arbitrarias y controladas, a descubrir, comprobar o demostrar las hipótesis.
  • Demostración o refutación, a partir de los resultados de uno o más experimentos realizados, de las hipótesis propuestas inicialmente.
  • Inducción: extraer el principio general implícito en los resultados observados.
  • Comparación universal: el permanente contraste de hipótesis con la realidad.

La experimentación no es aplicable a todas las ramas de la ciencia; su exigencia no es necesaria por lo general en áreas del conocimiento como la vulcanología, la astronomía, la física teórica, etc. Sin embargo, la repetibilidad de la observación de los fenómenos naturales es un requisito fundamental de toda ciencia que establece las condiciones que, de producirse, harían falsa la teoría o hipótesis investigada (véase falsación).

Por otra parte, existen ciencias, especialmente en el caso de las ciencias humanas y sociales, donde los fenómenos no solo no se pueden repetir controlada y artificialmente (que es en lo que consiste un experimento), sino que son, por su esencia, irrepetibles, por ejemplo, la historia.

Consenso científico y objetividad

El consenso científico es el juicio colectivo que manifiesta la comunidad científica respecto a una determinada posición u opinión, en un campo particular de la ciencia y en determinado momento de la historia. El consenso científico no es, en sí mismo, un argumento científico, y no forma parte del método científico; sin embargo, el consenso existe por el hecho de que está basado en una materia objeto de estudio que sí presenta argumentos científicos o que sí utiliza el método científico.

El consenso suele lograrse a través del debate científico. La ética científica exige que las nuevas ideas, los hechos observados, las hipótesis, los experimentos y los descubrimientos se publiquen, justamente para garantizar la comunicación a través de conferencias, publicaciones (libros, revistas) y su revisión entre pares y, dado el caso, la controversia con los puntos de vista discrepantes. La reproducibilidad de los experimentos y la falsación de las teorías científicas son un requisito indispensable para la buena práctica científica.

El conocimiento científico adquiere el carácter de objetividad por medio de la «comunidad y sus instituciones», con independencia de los individuos. D. Bloor, siguiendo a Popper y su teoría del mundo 3, convierte simétricamente el reino de lo social en un reino sin súbditos individuales, en particular reduce el ámbito del conocimiento al estado del conocimiento en un momento dado, esto es, a las creencias aceptadas por la comunidad relevante, con independencia de los individuos en concreto. El conocimiento científico es únicamente adscrito a la «comunidad científica».

Pero esto no debe llevar a pensar que el conocimiento científico es independiente de un individuo concreto como algo autónomo. Lo que ocurre es que se encuentra «socialmente fijado» en documentos y publicaciones y está causalmente relacionado con los conocimientos de los individuos concretos que forman parte de la comunidad.69

Aplicaciones de la lógica y de las matemáticas en la ciencia

La lógica y la matemática son esenciales para todas las ciencias por la capacidad de poder inferir con seguridad unas verdades a partir de otras establecidas; es lo que las hace recibir la denominación de ciencias exactas.

La función más importante de ambas es la creación de sistemas formales de inferencia y la concreción en la expresión de modelos científicos. La observación y colección de medidas, así como la creación de hipótesis y la predicción, requieren a menudo modelos lógico-matemáticos y el uso extensivo del cálculo; resulta especialmente relevante la creación de modelos científicos mediante el cálculo numérico, debido a las enormes posibilidades de cálculo que ofrecen los ordenadores.

Las ramas de la matemática más comúnmente empleadas en la ciencia incluyen el análisis matemático, el cálculo numérico y la estadística, aunque virtualmente toda rama de la matemática tiene aplicaciones en la ciencia, incluso áreas «puras» como la teoría de números y la topología.

El empirismo lógico llegó a postular que la ciencia venía a ser, en su unidad formal, una ciencia lógico-matemática capaz de interpretar adecuadamente la realidad del mundo. La utilidad de la matemática para describir el universo es un tema central de la filosofía de la matemática.

Divulgación científica

La divulgación científica tiene como objetivo hacer asequible el conocimiento científico a la sociedad más allá del mundo puramente académico. La divulgación puede referirse a los descubrimientos científicos del momento, como la determinación de la masa del neutrino, de teorías bien establecidas como la teoría de la evolución o de campos enteros del conocimiento científico. La divulgación científica es una tarea abordada por escritores, científicos, museos y periodistas de los medios de comunicaciónLa presencia tan activa y constante de la ciencia en los medios y viceversa ha hecho que se debata la conveniencia de utilizar la expresión «periodismo científico» en lugar de divulgación científica.[cita requerida]

Algunos científicos que han contribuido especialmente a la divulgación del conocimiento científico son: Jacob Bronowski (El ascenso del hombre), Carl Sagan (Cosmos: Un viaje personal), Stephen Hawking (Historia del tiempo), Richard Dawkins (El gen egoísta), Stephen Jay GouldMartin Gardner (artículos de divulgación de las matemáticas en la revista Scientific American), David Attenborough (La vida en la tierra) y autores de ciencia ficción como Isaac Asimov. Otros científicos han realizado tareas de divulgación tanto en libros como en novelas de ciencia ficción, como Fred Hoyle. La mayor parte de las agencias o institutos científicos destacados en los Estados Unidos cuentan con un departamento de divulgación (Education and Outreach), si bien no es una situación común en la mayoría de los países. Muchos artistas, aunque la divulgación científica no sea su actividad formal, han realizado esta tarea a través de sus obras de arte: gran número de novelas y cuentos y otros tipos de obras de ficción narran historias directa o indirectamente relacionadas con descubrimientos científicos diversos, como las obras de Julio Verne.

Influencia en la sociedad

Dado el carácter universal de la ciencia, su influencia se extiende a todos los campos de la sociedad, desde el desarrollo tecnológico a los modernos problemas de tipo jurídico relacionados con campos de la medicina o la genética. En ocasiones la investigación científica permite abordar temas de gran calado social como el Proyecto Genoma Humano y grandes implicaciones éticas como el desarrollo del armamento nuclear, la clonación, la eutanasia y el uso de las células madre.

Asimismo, la investigación científica moderna requiere en ocasiones importantes inversiones en grandes instalaciones como grandes aceleradores de partículas (CERN), la exploración espacial o la investigación de la fusión nuclear en proyectos como ITER.

Ciencias naturales

Las ciencias naturales buscan entender el funcionamiento del universo y el mundo que nos rodea. Se pueden distinguir cinco ramas principales: QuímicaAstronomíaGeologíaFísica y Biología.

Ciencias naturalesciencias de la naturalezaciencias físico-naturales o ciencias experimentales son aquellas ciencias que tienen por objeto el estudio de la naturaleza, siguiendo la modalidad del método científico conocida como método experimental. Estudian los aspectos físicos e intentando no incluir aspectos relativos a las acciones humanas. Así, como grupo, las ciencias naturales se distinguen de las ciencias sociales o ciencias humanas (cuya identificación o diferenciación de las humanidades y artes y de otro tipo de saberes es un problema epistemológico diferente).

Las ciencias naturales, por su parte, se apoyan en el razonamiento lógico y el aparato metodológico de las ciencias formales, especialmente de la matemática y la lógica, cuya relación con la realidad de la naturaleza es indirecta. A diferencia de las ciencias aplicadas, las ciencias naturales son parte de la ciencia básica, pero tienen en ellas sus desarrollos prácticos, e interactúan con ellas y con el sistema productivo en los sistemas denominados de investigación y desarrollo o investigación, desarrollo e innovación (I+D e I+D+I).1

No deben confundirse con el concepto más restringido de ciencias de la Tierra o geociencias.

 

 

Ramas de las ciencias naturales[editar]

Las Ciencias de la Tierra[editar]

En la segunda mitad del siglo XX, surgió un nuevo enfoque de las ciencias físico-naturales referido a las ciencias de la Tierra, en el que se elimina el estudio de la Astronomía y otras ciencias similares y, en cambio, se le añaden algunas ciencias a nivel detallado que permiten una mejor interpretación del mundo en que vivimos, es decir, del planeta Tierra. El enfoque unificador de las ciencias de la Tierra es el flujo de energía, por lo que la Termodinámica viene a ser la ciencia que sirve de base a este grupo de ciencias.

Descripción de las ciencias naturales[editar]

Las misiones de espacio se han utilizado a localizaciones distantes de la imagen dentro del sistema solar, como, por ejemplo, esta vista del Apolo 11. Vista del cráter Daedalus en la cara oculta de la Luna.

Astronomía[editar]

Esta disciplina es la ciencia de los objetos y fenómenos astronómicos originados fuera de la atmósfera terrestre. Su campo está relacionado con la Física, con la Química, con el movimiento y con la evolución de los objetos celestes, así como también con la formación y el desarrollo del Universo. La Astronomía incluye el examen, estudio y modelado de las estrellas, los planetas, los cometas, las galaxias y el cosmos. La mayoría de la información usada por los astrónomos es recogida por la observación remota, aunque se ha conseguido reproducir, en algunos casos, en laboratorio, la ejecución de fenómenos celestes, como, por ejemplo, la Química Molecular del medio interestelar.

Mientras los orígenes del estudio de los elementos y fenómenos celestes pueden ser rastreados hasta la antigüedad, la metodología científica de este campo empezó a desarrollarse a mediados del siglo XVII. Un factor clave fue la introducción del telescopio por Galileo Galilei, que permitió examinar el cielo de la noche más detalladamente. El tratamiento matemático de la Astronomía comenzó con el desarrollo de la mecánica celeste y con las leyes de gravitación por Isaac Newton, aunque ya había sido puesto en marcha por el trabajo anterior de astrónomos como Johannes Kepler. Hacia el siglo XIX, la Astronomía se había desarrollado como una ciencia formal, con la introducción de instrumentos tales como el espectroscopio y la fotografía, que permitieron la continua mejora de telescopios y la creación de observatorios profesionales.

Un fragmento de ADN, la secuencia química que contiene instrucciones genéticas para el desarrollo biológico fundamental y su funcionamiento en los seres vivos.

Biología[editar]

Este campo, comprende un conjunto de disciplinas que examinan fenómenos relativos a organismos vivos. La escala de estudio va desde los subcomponentes biofísicos hasta los sistemas complejos. La Biología se ocupa de las características, la clasificación y la conducta de los organismos, así como de la formación y las interacciones de las especies entre sí y con el medio natural.

Los campos biológicos de la Botánica, la Zoología y la Medicina surgieron desde los primeros momentos de la civilización, mientras que la Microbiología fue introducida en el siglo XVII con el descubrimiento del microscopio. Sin embargo, no fue hasta el siglo XIX cuando la Biología se unificó, una vez que los científicos descubrieron coincidencias en todos los seres vivos y decidieron estudiarlos como un conjunto. Algunos desarrollos clave en la ciencia de la Biología fueron la genética, la Teoría de la Evolución de Charles Darwin con la llamada selección natural, la Teoría Microbiana de las Enfermedades Infecciosas y la aplicación de técnicas de Física y Química a nivel celular y molecular (Biofísica y Bioquímica, respectivamente).

La Biología moderna se divide en sub-disciplinas, según los tipos de organismo y la escala en el que se estudian. La Biología Molecular es el estudio de la Química fundamental de la vida, mientras que la Biología Celular tiene como objeto el examen de la célula, es decir, la unidad constructiva básica de toda la vida. A un nivel más elevado, está la Fisiología, que estudia la estructura interna del organismo.

Física[editar]

La Física, incluye el estudio de los componentes fundamentales del Universo, las fuerzas e interacciones que ejercen entre sí y los resultados producidos por dichas interacciones. En general, la Física es considerada como una ciencia fundamental, estrechamente vinculada con la Matemática y la Lógica en la formulación y cuantificación de los principios.

El estudio de los principios del Universo tiene una larga historia y un gran trabajo deductivo, a partir de la observación y la experimentación. La formulación de las teorías sobre las leyes que gobiernan el Universo ha sido un objetivo central de la Física desde tiempos remotos, con la filosofía del empleo sistemático de experimentos cuantitativos de observación y prueba como fuente de verificación. La clave del desarrollo histórico de la Física incluye hitos como la Teoría de la Gravitación Universal y la mecánica clásica de Newton, la comprensión de la naturaleza de la electricidad y su relación con el magnetismo, la Teoría General de la Relatividad y la Teoría Especial de la Relatividad de Einstein, el desarrollo de la termodinámica y el modelo de la mecánica cuántica, a los niveles de la Física atómica y subatómica.

El campo de la Física es extraordinariamente amplio, y puede incluir estudios tan diversos como la Mecánica Cuántica, la Física Teórica o la Óptica. La Física moderna se orienta a una especialización creciente, donde los investigadores tienden a enfocar áreas particulares más que a ser universalistas, como lo fueron Albert Einstein o Lev Landau, que trabajaron en una multiplicidad de áreas.

Geología[editar]

La Geología es un término que engloba a las ciencias relacionadas con el planeta Tierra, que incluyen la Geofísica, la Tectónica, la Geología estructural, la Estratigrafía, la Geología histórica, la Hidrología, la Meteorología, la Geografía Física, la Oceanografía y la Edafología.

Aunque la minería y las piedras preciosas han sido objeto del interés humano a lo largo de la historia de la civilización, su desarrollo científico dentro de la ciencia de la Geología no ocurrió hasta el siglo XVIII. El estudio de la Tierra, en especial, la Paleontología, floreció en el siglo XIX, y el crecimiento de otras disciplinas, como la Geofísica, en el siglo XX, con la Teoría de las Placas Tectónicas, en los años 60, que tuvo un impacto sobre las ciencias de la Tierra similar a la Teoría de la Evolución sobre la Biología.

La Geología está, en la actualidad, estrechamente ligada a la investigación climática y a las industrias minera y petrolera.

Recreación de organismos del pasado (Pteranodon del Cretácico superior).

Paleontología[editar]

La paleontología estudia e interpreta el pasado de la vida sobre la Tierra a través de los fósiles. Posee un cuerpo de doctrina propio y comparte fundamentos y métodos con la geología y la biología con las que se integra estrechamente. Se divide en tres campos de estudio: paleobiologíatafonomía y biocronología.2

Entre sus objetivos están, además de la reconstrucción de los seres vivos que vivieron en el pasado, el estudio de su origen, de sus cambios en el tiempo (evolución y filogenia), de las relaciones entre ellos y con su entorno (paleoecología, evolución de la biosfera), de su distribución espacial y migraciones (paleobiogeografía), de las extinciones, de los procesos de fosilización (tafonomía) o de la correlación y datación de las rocas que los contienen (bioestratigrafía).

La Paleontología permite entender la actual composición (biodiversidad) y distribución de los seres vivos sobre la Tierra (biogeografía) —antes de la intervención humana—, ha aportado pruebas indispensables para la solución de dos de las más grandes controversias científicas del pasado siglo, la evolución de los seres vivos y la deriva de los continentes, y, de cara a nuestro futuro, ofrece herramientas para el análisis de cómo los cambios climáticos pueden afectar al conjunto de la biosfera.

Fórmula estructural de la molécula de cafeína.

Química[editar]

Constituyendo el estudio científico de la materia a escala atómica y molecular, la Química se ocupa principalmente de las agrupaciones supraatómicas, como son los gases, las moléculas, los cristales y los metales, estudiando su composición, propiedades estadísticas, transformaciones y reacciones. La Química también incluye la comprensión de las propiedades e interacciones de la materia a escala atómica. La mayoría de los procesos químicos pueden ser estudiados directamente en el laboratorio, usando una serie de técnicas a menudo bien establecidas, tanto de manipulación de materiales como de comprensión de los procesos subyacentes. Una aproximación alternativa es la proporcionada por las técnicas de modelado molecular, que extraen conclusiones de modelos computacionales. La Química es llamada a menudo "ciencia central", por su papel de conexión con las otras Ciencias Naturales.

La experimentación química tuvo su origen en la Alquimia, un sistema de creencias que combinaba esoterismo y experimentación física. La ciencia de la Química comenzó a desarrollarse a finales del siglo XVIII, con el trabajo de científicos notables como Robert Boyle, el descubridor de los gases, o Antoine Lavoisier, que descubrió la Ley de Conservación de la Masa. La sistematización se hizo patente con la creación de la Tabla Periódica de los Elementos y la introducción de la Teoría Atómica, cuando los investigadores desarrollaron una comprensión fundamental de los estados de la materia, los iones, los enlaces químicos y las reacciones químicas. Desde la primera mitad del siglo XIX, el desarrollo de la Química lleva aparejado la aparición y expansión de una industria química de gran relevancia en la economía y la calidad de vida actuales.

Ciencias cruzadas[editar]

Las diferencias entre las disciplinas de las Ciencias Naturales no siempre son marcadas, y estas «ciencias cruzadas» comparten un gran número de campos. La Física juega un papel significativo en las otras Ciencias Naturales, dando origen, por ejemplo, a la Astrofísica, la Geofísica, la Química Física y la Biofísica. Asimismo, la Química está representada por varios campos, como la Bioquímica, la Geoquímica y la Astroquímica.

Un ejemplo particular de disciplina científica que abarca múltiples Ciencias Naturales es la ciencia del medio ambiente. Esta materia estudia las interacciones de los componentes físicos, químicos y biológicos del medio, con particular atención a los efectos de la actividad humana y su impacto sobre la biodiversidad y la sostenibilidad. Esta ciencia también afecta a expertos de otros campos.

Una disciplina comparable a la anterior es la Oceanografía, que se relaciona con una amplia gama de disciplinas científicas. La Oceanografía se subdivide, a su vez, en otras disciplinas cruzadas, como la Biología Marina. Como el ecosistema marino es muy grande y diverso, la Biología Marina también se bifurca en muchas subdivisiones, incluyendo especializaciones en especies particulares.

Hay también un grupo de campos con disciplinas cruzadas en los que, por la naturaleza de los problemas que abarcan, hay fuertes corrientes contrarias a la especialización. Por otro lado, en algunos campos de aplicaciones integrales, los especialistas, en más de un campo, tienen un papel clave en el diálogo entre ellos. Tales campos integrales, por ejemplo, pueden incluir la Nanociencia, la Astrobiología y complejos sistemas informáticos.

Ciencias de la Tierra

Las ciencias de la Tierra o geociencias son las disciplinas de las ciencias naturales que estudian la estructura, morfología, evolución y dinámica del planeta Tierra. Su precedente más importante está formado por las Ciencias Naturales. Su principal exponente es la geología. Forman también parte de las ciencias planetarias, las cuales se ocupan del estudio de los planetas del Sistema Solar.

 

 

Particularidades respecto a otras ciencias[editar]

Las ciencias de la Tierra abarcan el estudio temporal y espacial del planeta desde un punto de vista físico, incluyendo su interacción con los seres vivos. Las variadas escalas espacio-temporales de la estructura y la historia de la Tierra hacen que los procesos que en ella tienen lugar sean resultado de una compleja interacción entre procesos de distintas escalas espaciales (desde el milímetro hasta los miles de kilómetros) y escalas temporales que abarcan desde las centésimas de segundo hasta los miles de millones de años. Un ejemplo de esta complejidad es el distinto comportamiento mecánico que algunas rocas tienen en función de los procesos que se estudien: mientras las rocas que componen el manto superior responden elásticamente al paso de las ondas sísmicas (con periodos típicos de fracciones de segundo), responden como un fluido en las escalas de tiempo de la tectónica de placas. Otro ejemplo del amplio abanico de escalas temporales es el cambio climático, que se produce en periodos de entre millones de años a unos pocos años, donde se confunde con las escalas propias del cambio meteorológico.

Como el objeto de estudio (la Tierra) no es manipulable y la obtención de datos directos es limitada, las técnicas de simulación análoga o computacional son de mucha utilidad.

Relevancia[editar]

Las ciencias de la Tierra constituyen una herramienta para planificar una explotación racional de los recursos naturales, comprender las causas que originan los fenómenos naturales que afectan al ser humano y cómo el ser humano influye en la naturaleza con sus acciones.

Por otro lado, las ciencias de la Tierra nos permiten entender los procesos naturales que han favorecido y/o amenazado la vida del hombre, y su estudio está ligado tanto al estudio de los flujos de energía en la naturaleza y al aprovechamiento de los mismos, como a la prevención de riesgos medioambientalessísmicosmeteorológicos y volcánicos, entre otros.

Historia[editar]

Las ciencias de la Tierra se encuentran en constante evolución. La geografía de Plinio el Viejo solo describía los elementos de la superficie de la Tierra sin ligarlos a través de procesos, y se daba poca importancia a la dinámica de cambios y la interacción con los elementos que componen el medio ambiente. Durante los primeros siglos de exploración europea1 se inició una etapa de conocimiento mucho más detallado de los continentes y océanos. Se cartografiaron en detalle, por ejemplo, las alineaciones magnéticas en el océano Atlántico, que serían de gran utilidad para la navegación intercontinental. En 1596, por ejemplo, Abraham Ortelius vislumbra ya la hipótesis de la deriva continental, precursora de la teoría de la tectónica de placas. Antes, los exploradores españoles y portugueses, habían acumulado un detallado conocimiento del campo magnético terrestre. El nacimiento de los conceptos básicos de la geología (gradualismo, superposición, etc), en el siglo XVII y XVIII (p.e., James Hutton) o la meteorología, dio paso a una eclosión en el estudio de la Tierra. Hoy, las ciencias de la Tierra son una extensión más de las ciencias físicas cuantitativas basadas en el empirismo, la experimentación y la reproducibilidad de las observaciones.

Disciplinas[editar]

Sismógrafo, aparato que registra la intensidad de las ondas sísmicas y la distancia desde el lugar donde se produce el sismo (epicentro).
  • Estudio de la Tierra sólida:
    • Geofísica, estudio del planeta desde el punto de vista de la física. Se analizan y modelan los fenómenos y anomalías geológicas, con el fin de lograr una descripción matemática y geométrica de las mismas.
    • Geomorfología, estudia las formas de la superficie terrestre, relacionadas con las estructuras y litología del subsuelo y los procesos erosivos que moldean las superficie.
    • Geografía, estudia la relación e interacción de la superficie terrestre con el hombre.
    • Geoquímica, estudia la abundancia absoluta y relativa, distribución y migración de los elementos que conforman la Tierra.
    • Paleontología, estudia los fósiles de plantas y animales, la evolución del vida en nuestro planeta y la utilidad geocronológica referente a las sucesiones faunísticas encontradas en las rocas.
    • Ciencia del suelo, estudia el suelo como recurso natural.
    • Geodesia, estudia la tierra teniendo en cuenta su curvatura.
  • Climatología, estudio del clima terrestre actual y en el pasado geológico.
  • Hidrología, estudia la distribución, espacial y temporal, y las propiedades del agua presente en la atmósfera y en la corteza terrestre.
  • Meteorología, estudio de la dinámica atmosférica y el tiempo meteorológico.
  • Oceanografía u oceanología, estudia la dinámica oceánica como las mareas, el oleaje y las corrientes. Estudia la vida y el suelo oceánico con el fin de una comprensión completa de la formación y evolución del planeta tierra (estudio de fosas, dorsales, islas y cordilleras sumergidas).

ciencias abielntales

Las ciencias ambientales son una disciplina científica interdisciplinaria cuyo principal objetivo es buscar y conocer las relaciones que mantiene el ser humano consigo mismo y con la naturaleza. Implica un área de estudio multidisciplinario que abarca distintos elementos como el estudio de problemas ambientales y la propuesta de modelos para el desarrollo sostenible.

La persona licenciada en Ciencias Ambientales que ejerce profesionalmente actividades relacionadas con esta disciplina recibe el nombre de ambientólogo o científico ambiental. Debido a la mencionada multidisciplinaridad del ámbito del ambientólogo, el ejercicio de su profesión puede abarcar un amplio espectro laboral:

Si bien estas tareas pueden ser también desempeñadas por especialistas de distintos ámbitos, el ambientólogo se caracteriza por presentar la preparación para afrontarlas de manera conjunta e integrada, teniendo en cuenta siempre los diferentes puntos de vista. El ambientólogo debe tener una visión del planeta que le permita desempeñar un papel predominante en todo lo referido a las políticas de desarrollo sostenible, integrando en la medida de lo posible las actividades en el medio natural [cita requerida].

Ciencias físicas

Las ciencias físicas son una rama de la ciencias naturales que estudia los sistemas inorgánicos (no vivos), en contraste con las ciencias biológicas. A su vez tiene muchas ramas, cada una referida a una ciencia específica. El término «física» crea una distinción arbitraria, pues muchas ramas de la ciencia física también estudian fenómenos biológicos, tal como la química orgánica. Otra definición de ciencias físicas es la siguiente: un trabajo sistemático que construye y organiza el conocimiento en forma de explicaciones comprobables y predicciones sobre el universo.1 2

Ramas[editar]

Véase también[editar]

Referencias[editar]

  1. Volver arriba Wilson, Edward O. (1998). Consilience: The Unity of Knowledge (en inglés) (1st edición). New York: Vintage Books. pp. 49-71. ISBN 0-679-45077-7.
  2. Volver arriba Heilbron, John Lewis, ed. (2003). The Oxford Companion to the History of Modern Science (en inglés). New York: Oxford University Press. ISBN 0-19-511229-6.

Sistema solar

Sistema solar
Planetas del Sistema Solar a escala..png
El Sol y los planetas del sistema solar. Los tamaños están a escala, pero no así las distancias.
Datos generales
Edad 4568 millones de años
Localización Nube Interestelar LocalBurbuja LocalBrazo de OriónVía Láctea
Estrella más cercana Próxima Centauri
(4,22 al).
Sistema planetario conocido más cercano Alfa Centauri
(4,37 al).
Sistema Planetario
Semieje mayor al planeta exterior (Neptuno) 4500 millones de kilómetros (30,10 UA).
Distancia al acantilado de Kuiper 50 UA
Nº de estrellas conocidas 1 (Sol)
Nº de planetas conocidos 8
Nº conocido de planetas enanos 5 (docenas pendientes de aceptación).
Nº conocido de satélites naturales 400 (176 de los planetas).
Nº conocido de planetas menores 587 479
Nº conocido de cometas 3153
Nº de satélites asteroidales 19
Órbita alrededor del centro galáctico
Inclinación del plano invariable respecto al plano galáctico 60 °
Distancia al centro galáctico 27 000±1 000 al
Velocidad orbital 220 km/s
Periodo orbital 225–250 Ma.
Propiedades de la estrella relacionada
Tipo espectral G2V
Línea de congelamiento 2,7 UA
Distancia a la heliopausa ~120 UA
Esfera de Hill ~1–2 al
[editar datos en Wikidata]

El sistema solar es el sistema planetario en el que se encuentran la Tierra y otros objetos astronómicos que giran directa o indirectamente en una órbita alrededor de una única estrella conocida como el Sol.1

La estrella concentra el 99,75 % de la masa del sistema solar,2 3 4 y la mayor parte de la masa restante se concentra en ocho planetas cuyas órbitas son prácticamente circulares y transitan dentro de un disco casi llano llamado plano eclíptico.5 Los cuatro planetas más cercanos, considerablemente más pequeños MercurioVenusTierra y Marte, también conocidos como los planetas terrestres, están compuestos principalmente por roca y metal.6 7 Mientras que los cuatro más alejados, denominados gigantes gaseosos o "planetas jovianos", más masivos que los terrestres, están compuesto de hielo y gases. Los dos más grandes, Júpiter y Saturno, están compuestos principalmente de helio e hidrógenoUrano y Neptuno, denominados los gigantes helados, están formados mayoritariamente por agua congelada, amoniaco y metano.8

Concepción artística de un disco protoplanetario.

El Sol es el único cuerpo celeste del sistema solar que emite luz propia,9 la cual es producida por la combustión de hidrógeno y su transformación en helio por la fusión nuclear.10 El sistema solar se formó hace unos 4600 millones de años11 12 13 a partir del colapso de una nube molecular. El material residual originó un disco circunestelarprotoplanetario en el que ocurrieron los procesos físicos que llevaron a la formación de los planetas.9 El sistema solar se ubica en la actualidad en la nube Interestelar Local que se halla en la Burbuja Local del brazo de Orión, de la galaxia espiral Vía Láctea, a unos 28 000 años luz del centro de esta.14

Concepción artística del sistema solar y las órbitas de sus planetas.

El sistema solar es también el hogar de varias regiones compuestas por objetos pequeños. El cinturón de asteroides, ubicado entre Marte y Júpiter, es similar a los planetas terrestres ya que está constituido principalmente por roca y metal. En este cinturón se encuentra el planeta enano Ceres. Más allá de la órbita de Neptuno están el cinturón de Kuiper, el disco disperso y la nube de Oort, que incluyen objetos transneptunianos formados por agua, amoníaco y metano principalmente. En este lugar existen cuatro planetas enanos HaumeaMakemakeEris y Plutón, el cual fue considerado el noveno planeta del sistema solar hasta 2006. Este tipo de cuerpos celestes ubicados más allá de la órbita de Neptuno son también llamados plutoides, los cuales junto a Ceres, poseen el suficiente tamaño para que se hayan redondeado por efectos de su gravedad, pero que se diferencian principalmente de los planetas porque no han vaciado su órbita de cuerpos vecinos.15

Adicionalmente a los miles de objetos pequeños de estas dos zonas, algunas docenas de los cuales son candidatos a planetas enanos, existen otros grupos como cometascentauros y polvo cósmico que viajan libremente entre regiones. Seis planetas y tres planetas enanos poseen satélites naturales. El viento solar, un flujo de plasma del Sol, crea una burbuja de viento estelar en el medio interestelar conocido como heliosfera, la que se extiende hasta el borde del disco disperso. La nube de Oort, la cual se cree que es la fuente de los cometas de período largo, es el límite del sistema solar y su borde está ubicado a un año luz desde el Sol.16

A principios del año 2016 se publicó un estudio según el cual puede existir un noveno planeta en el sistema Solar, al que dieron el nombre provisional de Phattie.17

 

 

Descubrimientos y exploración

Algunas de las más antiguas civilizaciones concibieron al universo desde una perspectiva geocéntrica, como en Babilonia en donde su visión del mundo estuvo representada de esta forma.18 En Occidente, el griego presocrático Anaximandro declaró a la Tierra como centro del universo, imaginó a esta como un pilar en forma de tambor equilibrado en sus cuatro puntos más distantes lo que, en su opinión, le permitió tener estabilidad.19 Pitágoras y sus seguidores hablaron por primera vez del planeta como una esfera, basándose en la observación de los eclipses;20 y en el siglo IV a. C. Platón junto a su estudiante Aristóteles escribieron textos del modelo geocéntrico de Anaximandro, fusionándolo con el esférico pitagórico. Pero fue el trabajo del astrónomo heleno Claudio Ptolomeo, especialmente su publicación llamada Almagesto expuesta en el siglo II de nuestra era, el cual sirvió durante un período de casi 1300 años como la norma en la cual se basaron tanto astrónomos europeos como islámicos.

Si bien el griego Aristarco presentó en el siglo siglo III a. C. a la teoría heliocéntrica y más adelante el matemático hindú Aryabhata hizo lo mismo, ningún astrónomo desafió realmente el modelo geocéntrico hasta la llegada del polaco Nicolás Copérnico el cual causó una verdadera revolución en esta rama a nivel mundial,21 por lo cual es considerado el padre de la astronomía moderna.22 Esto debido a que, a diferencia de sus antecesores, su obra consiguió una amplia difusión pese a que fue concebida para circular en privado; el papa Clemente VII pidió información de este texto en 1533 y Lutero en el año 1539 lo calificó de "astrólogo advenedizo que pretende probar que la Tierra es la que gira".23 La obra de Copérnico otorga dos movimientos a la tierra, uno de rotación en su propio eje cada 24 horas y uno de traslación alrededor del Sol cada año, con la particularidad de que este era circular y no elíptico como lo describimos hoy.

En el siglo XVII el trabajo de Copérnico fue impulsado por científicos como Galileo Galilei, quien ayudado con un nuevo invento, el telescopio, descubre que alrededor de Júpiter rotan satélites naturales que afectaron en gran forma la concepción de la teoría geocéntrica ya que estos cuerpos celestes no orbitaban a la Tierra;24 25 lo que ocasionó un gran conflicto entre la iglesia y los científicos que impulsaban esta teoría, el cual culminó con el apresamiento y sentencia del tribunal de la inquisición a Galileo por herejía al estar su idea contrapuesta con el modelo clásico religioso.26 Su contemporáneo Johannes Kepler, a partir del estudio de la órbita circular intentó explicar la traslación planetaria sin conseguir ningún resultado,27 por lo que reformuló sus teorías y publicó, en el año 1609, las hoy conocidas Leyes de Kepler en su obra Astronomia Nova, en la que establece una órbita elíptica la cual se confirmó cuando predijo satisfactoriamente el tránsito de Venus del año 1631.28 Junto a ellos el científico británico Isaac Newton formuló y dio una explicación al movimiento planetario mediante sus leyes y el desarrollo del concepto de la gravedad.29

En el año 1704 se acuñó el término sistema solar.30 El científico británico Edmund Halley dedicó sus estudios principalmente al análisis de las órbitas de los cometas.31 32 El mejoramiento del telescopio durante este tiempo permitió a los científicos de todo el mundo descubrir nuevas características de los cuerpos celestes que existen.33 A mediados del siglo XX, el 12 de abril de 1961, el cosmonauta Yuri Gagarin se convirtió en el primer hombre en el espacio;34 la misión estadounidense Apolo 11 al mando de Neil Armstrong llega a la Luna. En la actualidad, el sistema solar se estudia con ayuda de telescopios terrestres, observatorios espaciales y misiones espaciales.

Características generales

El Sol.

Los planetas y los asteroides orbitan alrededor del Sol, aproximadamente en un mismo plano y siguiendo órbitas elípticas (en sentido antihorario, si se observasen desde el Polo Norte del Sol); aunque hay excepciones, como el cometa Halley, que gira en sentido horario.35 El plano en el que gira la Tierra alrededor del Sol se denomina plano de la eclíptica, y los demás planetas orbitan aproximadamente en el mismo plano. Aunque algunos objetos orbitan con un gran grado de inclinación respecto de este, como Plutón que posee una inclinación con respecto al eje de la eclíptica de 17º, así como una parte importante de los objetos del cinturón de Kuiper.36 37

Según sus características, los cuerpos que forman parte del sistema solar se clasifican como sigue:

  • El Sol, una estrella de tipo espectral G2 que contiene más del 99,85 % de la masa del sistema. Con un diámetro de 1 400 000 km, se compone de un 75 % de hidrógeno, un 20 % de helio y 5 % de oxígeno, carbono, hierro y otros elementos.38
  • Los planetas, divididos en planetas interiores (también llamados terrestres o telúricos) y planetas exteriores o gigantes. Entre estos últimos Júpiter y Saturno se denominan gigantes gaseosos, mientras que Urano y Neptuno suelen nombrarse gigantes helados. Todos los planetas gigantes tienen a su alrededor anillos.
  • Los planetas enanos son cuerpos cuya masa les permite tener forma esférica, pero no es la suficiente como para haber atraído o expulsado a todos los cuerpos a su alrededor. Son: Plutón (hasta 2006 era considerado el noveno planeta del sistema solar39 ), CeresMakemakeEris y Haumea.
  • Los satélites son cuerpos mayores que orbitan los planetas; algunos son de gran tamaño, como la Luna, en la TierraGanímedes, en Júpiter, o Titán, en Saturno.
  • Los cuerpos menores:
    • Los asteroides son cuerpos menores concentrados mayoritariamente en el cinturón de asteroides entre las órbitas de Marte y Júpiter, y otra más allá de Neptuno. Su escasa masa no les permite tener forma regular.
    • Los objetos del cinturón de Kuiper son objetos helados exteriores en órbitas estables, los mayores de los cuales son Sedna y Quaoar.
    • Los cometas son objetos helados pequeños provenientes de la nube de Oort.
    • Los meteoroides son objetos menores de 50 m de diámetro, pero mayores que las partículas de polvo cósmico.

El espacio interplanetario en torno al Sol contiene material disperso procedente de la evaporación de cometas y del escape de material proveniente de los diferentes cuerpos masivos. El polvo interplanetario (especie de polvo interestelar) está compuesto de partículas microscópicas sólidas. El gas interplanetario es un tenue flujo de gas y partículas cargadas que forman un plasma que es expulsado por el Sol en el viento solar. El límite exterior del sistema solar se define a través de la región de interacción entre el viento solar y el medio interestelar originado de la interacción con otras estrellas. La región de interacción entre ambos vientos se denomina heliopausa y determina los límites de influencia del Sol. La heliopausa puede encontrarse a unas 100 UA (15 000 millones de kilómetros del Sol).

Los sistemas planetarios detectados alrededor de otras estrellas parecen muy diferentes del sistema solar, si bien con los medios disponibles solo es posible detectar algunos planetas de gran masa en torno a otras estrellas. Por tanto, no parece posible determinar hasta qué punto el sistema solar es característico o atípico entre los sistemas planetarios del Universo.

Distancias de los planetas

Las órbitas de los planetas mayores se encuentran ordenadas a distancias del Sol crecientes, de modo que la distancia de cada planeta es aproximadamente el doble que la del planeta inmediatamente anterior, aunque esto no se ajusta a todos los planetas. Esta relación se expresa mediante la ley de Titius-Bode, una fórmula matemática aproximada que indica la distancia de un planeta al Sol, en Unidades Astronómicas (UA):

{\displaystyle a=0,4+0,3\times k\,\!}    
donde k  = 0, 1, 2, 4, 8, 16, 32, 64, 128.

Donde la órbita de Mercurio se encuentra en k = 0 y semieje mayor 0,4 UA, la órbita de Marte es k = 4 a 1,6 UA, y Ceres (el mayor asteroide) es k = 8. En realidad las órbitas de Mercurio y Marte se encuentran en 0,38 y 1,52 UA. Esta ley no se ajusta a todos los planetas, por ejemplo Neptuno está mucho más cerca de lo que predice esta ley. No hay ninguna explicación de la ley de Titius-Bode y muchos científicos consideran que se trata tan solo de una coincidencia.40

Formación y evolución

El sistema solar se formó hace 4568 millones de años por el colapso gravitatorio de una parte de una nube molecular gigante. Esta nube primigenia tenía varios años luz de diámetro y probablemente dio a luz a varias estrellas.41 Como es normal en las nubes moleculares, consistía principalmente de hidrógeno, algo de helio y pequeñas cantidades de elementos pesados surgidos de previas generaciones estelares. A medida que la región —conocida como nebulosa protosolar—42 se convertía en el sistema solar, colapsaba y la conservación del momento angular hizo que rotase más deprisa. El centro, donde se acumuló la mayor parte de la masa, se volvió cada vez más caliente que el disco circundante.41 A medida que la nebulosa en contracción rotaba más deprisa, comenzó a aplanarse en un disco protoplanetario con un diámetro de alrededor de 200 ua 41y una densa y caliente protoestrella en el centro.43 44 Los planetas se formaron por acreción a partir de este disco 45 en el que el gas y el polvo atraídos gravitatoriamente entre sí se unen para formar cuerpos cada vez más grandes. En este escenario, cientos de protoplanetas podrían haber surgido en el temprano sistema solar que acabaron fusionándose o fueron destruidos dejando los planetas, los planetas enanos y el resto de cuerpos menores.

Gracias a sus puntos de ebullición más altos, solo los metales y silicatos podían existir en forma sólida cerca del Sol, en el cálido sistema solar interior; estos fueron finalmente los componentes de Mercurio, Venus, la Tierra y Marte: los planetas rocosos. Debido a que los metales solo eran una pequeña parte de la nebulosa solar, los planetas terrestres no se podían hacer muy grandes. Los planetas gigantes (Júpiter, Saturno, Urano y Neptuno) se formaron más lejos, más allá de la línea de congelación: el límite entre las órbitas de Marte y Júpiter donde las temperaturas son lo suficientemente bajas como para que los compuestos volátiles permanezcan sólidos. Los hielos que forman estos planetas eran más abundantes que los metales y silicatos que formaron los planetas terrestres interiores, por lo que los permitió crecer hasta ser lo suficientemente masivos como para capturar grandes atmósferas de hidrógeno y helio: los elementos más ligeros y abundantes. Los residuos restantes que no llegaron a convertirse en planetas se agruparon en regiones como el cinturón de asteroides, el cinturón de Kuiper y la nube de Oort. El modelo de Niza explica la aparición de estas regiones y propone que los planetas exteriores se podrían haber formado en sitios diferentes de los actuales a los que habrían llegado tras múltiples interacciones gravitatorias.

Tras cincuenta millones de años, la densidad del hidrógeno y la presión en el centro de la protoestrella se hicieron tan grandes que comenzó la fusión termonuclear.46 La temperatura, la velocidad de reacción, la presión y la densidad aumentaron hasta alcanzar el equilibrio hidrostático: la presión térmica igualó a la fuerza de la gravedad. En ese momento, el Sol entró en la secuencia principal.47 El tiempo que estará en la secuencia principal será de unos diez mil millones de años; en comparación, todas las fases previas al encendido termonuclear duraron unos dos mil millones de años.48 El viento solar formó la heliosfera que barrió los restos de gas y polvo del disco protoplanetario (y los expulsó al espacio interestelar), con lo que terminó el proceso de formación planetaria. Desde entonces, el Sol se ha ido haciendo cada vez más brillante; en la actualida es un 70 % más brillante que a su entrada en la secuencia principal.49

El sistema solar continuará más o menos como lo conocemos hasta que todo el hidrógeno del núcleo del Sol se haya convertido en helio, situación que tendrá lugar dentro de cinco mil millones de años. Esto marcará el final de la estancia del Sol en la secuencia principal. En ese momento el núcleo colapsará y la producción de energía será mucho mayor que en el presente. Las capas exteriores se expandirán unas doscientas sesenta veces su diámetro actual, por lo que se convertirá en una gigante roja. El gran aumento de su superficie hará que esté muchísimo más frío (del orden de 2600 K).48 Se espera que el Sol en expansión vaporice Mercurio y Venus y vuelva la Tierra inhabitable al mover la zona de habitabilidad más allá de la órbita de Marte. Por último, el núcleo estará lo bastante caliente para fusionar el helio; el Sol quemará helio durante una fracción del tiempo que estuvo quemando hidrógeno. El Sol no tiene la suficiente masa para comenzar la fusión de elementos pesados, por lo que las reacciones nucleares en el núcleo disminuirán. Las capas exteriores se perderán en el espacio en forma de nebulosa planetaria, devolviendo parte del material con el que se formó el Sol —enriquecido con elementos pesados como el carbono— al medio interestelar y dejando atrás una enana blanca con la mitad de la masa original del Sol y el tamaño de la Tierra (un objeto extraordinariamente denso).50

Objetos del sistema solar

Los principales objetos del sistema solar son:

Sistema Solar
El Sol Mercurio Venus La Luna Tierra Phobos y Deimos Marte Ceres Cinturón de asteroides Júpiter Satélites de Júpiter Saturno Satélites de Saturno Urano Satélites de Urano Satélites de Neptuno Neptuno Satélites de Plutón Plutón Satélites de Haumea Haumea Makemake Cinturón de Kuiper Disnomia Eris Disco disperso Nube de Oort Solar System XXX.png
Planetas y planetas enanos Sol - Mercurio - Venus - Tierra - Marte - Ceres - Júpiter - Saturno - Urano - Neptuno - Plutón - Haumea -Makemake - Eris
Satélite natural Terrestre - Marcianas - Asteroidales - Jovianas - Saturnianas - Uranianas - Neptunianas - Plutonianas - Haumeanas - Eridiana

Estrella central

El Sol es la estrella única y central del sistema solar; por tanto, es la estrella más cercana a la Tierra y el astro con mayor brillo aparente. Su presencia o su ausencia en el cielo terrestre determinan, respectivamente, el día y la noche. La energía radiada por el Sol es aprovechada por los seres fotosintéticos, que constituyen la base de la cadena trófica, y es por ello la principal fuente de energía de la vida. También aporta la energía que mantiene en funcionamiento los procesos climáticos. El Sol es una estrella que se encuentra en la fase denominada secuencia principal, con un tipo espectral G2, que se formó hace unos 5000 millones de años, y permanecerá en la secuencia principal aproximadamente otros 5000 millones de años.

A pesar de ser una estrella mediana, es la única cuya forma circular se puede apreciar a simple vista, con un diámetro angular de 32' 35" de arco en el perihelio y 31' 31" en el afelio, lo que da un diámetro medio de 32' 03". Casualmente, la combinación de tamaños y distancias del Sol y la Luna respecto a la Tierra, hace que se vean aproximadamente con el mismo tamaño aparente en el cielo. Esto permite una amplia gama de eclipses solares distintos (totales, anulares o parciales).

Se han descubierto sistemas planetarios que tienen más de una estrella central (sistema estelar).

Planetas

Los ocho planetas que componen el sistema solar son, de menor a mayor distancia respecto al Sol, los siguientes:

Los planetas son cuerpos que giran formando órbitas alrededor de la estrella, tienen suficiente masa para que su gravedad supere las fuerzas del cuerpo rígido, de manera que asuman una forma en equilibrio hidrostático (prácticamente esférica), y han limpiado la vecindad de su órbita de planetesimales (dominancia orbital).

Los planetas interiores son Mercurio, Venus, la Tierra y Marte y tienen la superficie sólida. Los planetas exteriores son Júpiter, Saturno, Urano y Neptuno, también se denominan planetas gaseosos porque contienen en sus atmósferas gases como el helio, el hidrógeno y el metano, y no se conoce con certeza la estructura de su superficie.

El 24 de agosto de 2006, la Unión Astronómica Internacional (UAI) excluyó a Plutón como planeta del sistema solar, y lo clasificó como planeta enano.

A principios del año 2016 se publicó un estudio según el cual puede existir un noveno planeta en el sistema Solar, al que dieron el nombre provisional de Phattie. Dicho estudio se centró en la explicación de las órbitas de muchos de los objetos en el cinturón de Kuiper, que difieren mucho con las órbitas que se calculan, incluidos objetos muy conocidos Sedna. Por tanto se surgió originalmente la idea de la existencia de un objeto no conocido perturbando dichas órbitas. Utilizando modelos matemáticos se realizaron simulaciones en computadora, y se determinó que el posible planeta tendría una órbita excéntrica a una distancia de unas entre 700 y 200 UA del Sol, y tardaría unos diez o veinte mil años en dar una vuelta.17 51 52

Características principales

Las principales características de los planetas del sistema solar son:

Planeta Símb. Diámetro ecuatorial* Diámetro ecuatorial (km). Masa* Radio orbital (UA). Periodo orbital (años). Periodo de rotación (días). Incl.** Sat.*** Composición de la atmósfera Imagen
Mercurio Mercury symbol.svg 0,39 4878 0,06 0,39 0,24 58,6 0 Trazas de hidrógeno y helio Mercury in color - Prockter07 centered.jpg
Venus Venus symbol.svg 0,95 12100 0,82 0,72 0,615 243 3,4° 0 96 % CO2, 3 % nitrógeno,0.1 % agua Venus-real color.jpg
Tierra Earth symbol.svg 1,00 12756 1,00 1,00 1,00 1,00 1 78 % nitrógeno, 21 % oxígeno, 1 % argón Earth Eastern Hemisphere.jpg
Marte Mars symbol.svg 0,53 6787 0,11 1,52 1,88 1,03 1,9º 2 95 % CO2, 1.6 % argón, 3 % nitrógeno Mars Valles Marineris.jpeg
Júpiter Jupiter symbol.svg 11,2 142984 318 5,20 11,86 0,414 1,3º 63 90 % hidrógeno, 10 % helio, trazas de metano Jupiter.jpg
Saturno Saturn symbol.svg 9,41 120536 95 9,54 29,46 0,426 2,5º 61 96 % hidrógeno, 3 % helio, 0.5 % metano Saturn from Cassini Orbiter (2004-10-06).jpg
Urano Uranus's astrological symbol.svg 3,98 51108 14,6 19,19 84,01 0,718 0,8º 27 84 % hidrógeno, 14 % helio, 2 % metano Uranus.jpg
Neptuno Neptune symbol.svg 3,81 49538 17,2 30,06 164,79 0,6745 1,8º 13 74 % hidrógeno, 25 % helio, 1 % metano Neptune.jpg

* El diámetro y masa se expresan en relación a la Tierra   ** Inclinación de órbita (en relación con la eclíptica)   *** Satélites naturales

Planetas enanos

Los cinco planetas enanos del sistema solar, de menor a mayor distancia respecto al Sol, son los siguientes:

Los planetas enanos son aquellos que, a diferencia de los planetas, no han limpiado la vecindad de su órbita.

Poco después de su descubrimiento en 1930, Plutón fue clasificado como un planeta por la Unión Astronómica Internacional (UAI). Sin embargo, tras el descubrimiento de otros grandes cuerpos con posterioridad, se abrió un debate con objeto de reconsiderar dicha decisión. El 24 de agosto de 2006, en la XXVI Asamblea General de la UAI en Praga, se decidió que el número de planetas no se ampliase a doce, sino que debía reducirse de nueve a ocho, y se creó entonces la nueva categoría de planeta enano, en la que se clasificaría Plutón, que dejó por tanto de ser considerado planeta debido a que, por tratarse de un objeto transneptuniano perteneciente al cinturón de Kuiper, no ha limpiado la vecindad de su órbita de objetos pequeños.

Planeta enano Diámetro medio* Diámetro (km). Masa* Radio orbital (UA). Periodo orbital (años). Periodo de rotación (días). Satélites naturales Imagen
Ceres 0,074 952,4 0,00016 2,766 4,599 0,3781 0 PIA19562-Ceres-DwarfPlanet-Dawn-RC3-image19-20150506.jpg
Plutón 0,22 2370 0,0021 39,482 247,92 -6,3872 5 Pluto by LORRI and Ralph, 13 July 2015.jpg
Haumea 0,09   0,0007 43,335 285,4 0,167 2 2003EL61art.jpg
Makemake 0,12   0,0007 45,792 309,9  ? 0 2005FY9art.jpg
Eris 0,19 2326 0,0028 67,668 557  ? 1 2003 UB313 NASA illustration.jpg

* El diámetro y masa se expresan aquí tomando como referencia los datos de la Tierra.

Grandes satélites del sistema solar

Algunos satélites del sistema solar son tan grandes que, si se encontraran orbitando directamente alrededor del Sol, se clasificarían como planetas o como planetas enanos; por orbitar a los planetas principales, estos cuerpos pueden denominarse «planetas secundarios». El siguiente listado recoge los satélites del sistema solar que mantienen un equilibrio hidrostático:

Satélite Planeta Diámetro (km). Período orbital Imagen
Luna Tierra 3476 27d 7h 43,7m Full Moon Luc Viatour.jpg
Ío Júpiter 3643 1d 18h 27,6m Iosurface gal.jpg
Europa Júpiter 3122 3,551181 d Europa-moon.jpg
Ganímedes Júpiter 5262 7d 3h 42,6m Moon Ganymede by NOAA.jpg
Calisto Júpiter 4821 16,6890184 d Callisto, moon of Jupiter, NASA.jpg
Titán Saturno 5162 15d 22h 41m Titan multi spectral overlay.jpg
Tetis Saturno 1062 1,888 d Saturn's Moon Tethys as seen from Voyager 2.jpg
Dione Saturno 1118 2,736915 d Dionean Linea PIA08256.jpg
Rea Saturno 1529 4,518 d Rhea hi-res PIA07763.jpg
Jápeto Saturno 1436 79d 19h 17m Iapetus as seen by the Cassini probe - 20071008.jpg
Mimas Saturno 416 22 h 37 min Mimas moon.jpg
Encélado Saturno 499 32 h 53 m Enceladusstripes cassini.jpg
Miranda Urano 472 1,413 d Miranda.jpg
Ariel Urano 1162 2,52 d Color Image of Ariel as seen from Voyager 2.jpg
Umbriel Urano 1172 4,144 d Umbriel moon 1.gif
Titania Urano 1577 8,706 d Titania (moon) color cropped.jpg
Oberón Urano 1523 13,46 d Voyager 2 picture of Oberon.jpg
Tritón Neptuno 2707 -5877 d Triton Voyager 2.jpg
Caronte Plutón 1207 6,387 230 d Charon-Neutral-Bright-Release.jpg

Cuerpos menores

Planetas menores o planetoides.

Los cuerpos menores del sistema solar están agrupados en:

Un cuerpo menor del sistema solar (CMSS o del inglés SSSBsmall Solar System body) es, según la resolución de la UAI (Unión Astronómica Internacional) del 22 de agosto de 2006, un cuerpo celeste que orbita en torno al Sol y que no es planeta, ni planeta enano, ni satélite:

Recreación artística del nacimiento del Sistema Solar (NASA)

Todos los otros objetos [referido a los que no sean ni planetas ni planetas enanos ni satélites], y que orbitan alrededor del Sol, se deben denominar colectivamente "cuerpos menores del sistema solar" (Small Solar-System Bodies).
Estos actualmente incluyen la mayoría de los asteroides del sistema solar, la mayoría de los objetos transneptunianos (OTN), cometas, y otros pequeños cuerpos.53

Por consiguiente, según la definición de la UAI, son cuerpos menores del Sistema Solar, independientemente de su órbita y composición:

Según las definiciones de planeta y de planeta enano, que atienden a la esfericidad del objeto debido a su gran masa, se puede definir como «cuerpo menor del sistema solar», por exclusión, a todo cuerpo celeste que, sin ser un satélite, no haya alcanzado suficiente tamaño o masa como para adoptar una forma esencialmente esférica.

Según algunas estimaciones, la masa requerida para alcanzar la condición de esfericidad se situaría en torno a los 5 x 1020 kg, resultando el diámetro mínimo en torno a los 800 km. Sin embargo, características como la composición química, la temperatura, la densidad o la rotación de los objetos pueden variar notablemente los tamaños mínimos requeridos, por lo que se rechazó asignar valores apriorísticos a la definición, dejando la resolución individual de cada caso a la observación directa.54

Según la UAI, algunos de los cuerpos menores del sistema solar más grandes podrían reclasificarse en el futuro como planetas enanos, tras un examen para determinar si están en equilibrio hidrostático, es decir: si son suficientemente grandes para que su gravedad venza las fuerzas del sólido rígido hasta haber adoptado una forma esencialmente esférica.55

Exceptuando los objetos transneptunianos, los cuerpos menores del sistema solar de mayor tamaño son Vesta y Palas, con algo más de 500 km de diámetro.

Planetas menores Diámetro ecuatorial (km). Masa (M⊕). Radio orbital (UA). Periodo orbital (años). Periodo de rotación (días). Imagen
Vesta 578×560×458 0,000 23 2,36 3,63 0,2226 Vesta from Dawn, July 17.jpg
Orcus 840 - 1880 0,000 10 - 0,001 17 39,47 248  ? Orcus art.png
Ixion ~822 0,000 10 - 0,000 21 39,49 248  ? Ixion orbit.png
2002 UX25 910 0,000 123 42,9 277  ? 20131105 2002 UX25 hst.png
2002 TX300 900  ? 43,102 283  ? TX300-2009Nov16-04UT.jpg
Varuna 900 - 1060 0,000 05 - 0,000 33 43,129 283 0,132 o 0,264 Varuna artistic.png
1996 TO66 902 ?  ? 43,2 285 7,92 (19308) 1996 TO66.png
Quaoar 1280 0,000 17 - 0,000 44 43,376 285  ? Quaoar PRC2002-17e.jpg
2002 AW197 734  ? 47,0 325 8,86 2002AW197-Spitzer.jpg
2002 TC302 1200 0,003 98 55,535 413,86  ?
2007 OR10 1280 - 67,21 550  ? 2007 OR10 artist.png
Sedna 1180 - 1800 0,000 14 - 0,001 02 502,040 11500 20 Artist's conception of Sedna.jpg

La dimensión astronómica de las distancias en el espacio

Arriba a la izquierda: 1) Sistema solar interior: desde el Sol hasta el cinturón de asteroides. 2) A la derecha: sistema solar exterior: desde Júpiter hasta el cinturón de Kuiper. 3) Abajo a la derecha: la órbita del planeta menor Sedna en comparación con la imagen de la izquierda, la nube de Oort, límite exterior del sistema solar.

Para tener una noción de la dimensión astronómica de las distancias en el espacio, es interesante hacer un modelo a escala que permita tener una percepción más clara del mismo. Imagínese un modelo reducido en el que el Sol esté representado por una pelota de 220 mm de diámetro. A esa escala, la Tierra estaría a 23,6 m de distancia y sería una esfera con apenas 2 mm de diámetro (la Luna estaría a unos 5 cm de la tierra y tendría un diámetro de unos 0,5 mm). Júpiter y Saturno serían bolitas con cerca de 2 cm de diámetro, a 123 y a 226 m del Sol, respectivamente. Plutón estaría a 931 m del Sol, con cerca de 0,3 mm de diámetro. En cuanto a la estrella más próxima (Próxima Centauri), estaría a 6 332 km del Sol, y la estrella Sirio, a 13 150 km.

Si se tardase 1 h y cuarto en ir de la Tierra a la Luna (a unos 257 000 km/h), se tardaría unas tres semanas (terrestres) en ir de la Tierra al Sol, unos 3 meses en ir a Júpiter, 7 meses a Saturno y unos dos años y medio en llegar a Plutón y abandonar el sistema solar. A partir de ahí, a esa velocidad, sería necesario esperar unos 17 600 años hasta llegar a la estrella más próxima, y 35 000 años hasta llegar a Sirio.

Una escala comparativa más exacta puede tenerse si se compara el Sol con un disco compacto de 12 cm de diámetro. A esta escala, la Tierra tendría poco más de un milímetro de diámetro (1,1 mm). El Sol estaría a 6,44 metros. El diámetro de la estrella más grande del Universo conocido, VY Canis Majoris, sería de 264 metros (imagínese esa enorme estrella de casi tres manzanas de casas de tamaño, en comparación con nuestra estrella de 12 cm). La órbita externa de Eris se alejaría a 625,48 metros del Sol. Allí nos espera un gran vacío hasta la estrella más cercana, Próxima Centauri, a 1645,6 km de distancia. A partir de allí, las distancias galácticas exceden el tamaño de la Tierra (aun utilizando la misma escala). Con un Sol del tamaño de un disco compacto, el centro de la galaxia estaría a casi 11 millones de kilómetros y el diámetro de la Vía Láctea sería de casi 39 millones de kilómetros. Habría un enorme vacío, pues la galaxia Andrómeda estaría a 1028 millones de kilómetros, casi la distancia real entre el Sol y Saturno.56

Véase también

Referencias

  1. Volver arriba NASA (2012). «¿Por qué giran los planetas alrededor del sol?». Consultado el 01 de agosto de 2014.
  2. Volver arriba Michael Woolfson (2001). «The origin and evolution of the solar system» (en inglés). Consultado el 31 de julio de 2014.
  3. Volver arriba Jorge Ianiszewski Rojas (2011). «Curso de astronomía básica» (PDF). Consultado el 31 de julio de 2014.
  4. Volver arriba Calvin J. Hamilton (2000). «El Sistema Solar». Consultado el 01 de agosto de 2014.
  5. Volver arriba M Olmo R Nave (2000). «Plano Eclíptico». Consultado el 01 de agosto de 2014.
  6. Volver arriba Alejandra León Castellá (2006). «Los elementos en el sistema solar». Consultado el 31 de agosto de 2014.
  7. Volver arriba Universidad Politécnica de Valencia (2000). «El Sistema Solar». Archivado desde el original el 28 de noviembre de 2015. Consultado el 01 de agosto de 2014.
  8. Volver arriba Ross Taylor, Stuart (1998). Nuestro Sistema Solar y su lugar en el cosmos (1 edición). Cambridge Press. p. 85. ISBN 84 8323 110 7. Consultado el 31 de julio de 2014.
  9. ↑ Saltar a:a b Astronomía.com (2011). «Planetas del sistema solar». Consultado el 31 de julio de 2014.
  10. Volver arriba Science in Shool (2006). «Fusión en el Universo: la energía del Sol». Consultado el 31 de julio de 2014.
  11. Volver arriba EFE (2010). «El Sistema Solar se originó dos millones de años antes de lo que se creía». Consultado el 30 de julio de 2014.
  12. Volver arriba Europa Press (2014). «La Luna es 100 millones de años más joven de lo que se creía». Consultado el 01 de agosto de 2014.
  13. Volver arriba BBC Mundo (2013). «La Luna es 100 millones de años más joven de lo que se estimaba». Consultado el 01 de agosto de 2014.
  14. Volver arriba Cielo Sur (2010). «Un recorrido por nuestro Sistema Solar». Consultado el 1 de agosto de 2014.
  15. Volver arriba Últimas noticias del cosmos (2008). «Los planetas enanos serán plutoides». Consultado el 01 de agosto de 2014.
  16. Volver arriba AstronoMia (2012). «La nube de Oort». Consultado el 01 de agosto de 2014.
  17. ↑ Saltar a:a b Ángela Bernardo (20 de enero de 2016). «Primeras evidencias de Phattie, el posible noveno planeta del Sistema Solar». Consultado el 24 de febrero de 2016.
  18. Volver arriba Sellés, Manuel; Solís, Carlos (2005). Historia de la Ciencia. Pozuelo de Alarcón: Espasa. p. 36. ISBN 84-670-1741-4.
  19. Volver arriba Ochoa, Cesar Gonzales (2004). Universidad Nacional Autónoma de México, ed. La polis: Ensayo sobre el concepto de ciudad en Grecia antigua (Primera edición). Ciudad de México: IIFL. pp. 42-43. ISBN 970-32-2042-8. «En este esfuerzo de Anaximandro por sistematizar resultados anteriores y por dar a la tierra una representación conforme a los principios de la razón hay una gran audacia: para él la tierra es un pilar en forma de tambor, lo cual define un mapa circular. Está rodeada por el río Océano. Su superficie está construida de acuerdo con dos ejes perpendiculares: el paralelo, que corresponde al futuro paralelo Gibraltar-Rodas de los geógrafos helenísticos y que corta en dos Anatolia, Grecia y Sicilia; el otro es el meridiano de Delfos. En este mapa se distingue un rectángulo que encierra las regiones habitadas; fuera de él están las tierras que el frío y el calor extremo hacen inhabitables; el disco está rodeado por el Océano. Los cuatro lados del rectángulo son los dominios de los pueblos a los que la tradición atribuye las regiones más distantes: celtas e indios; escitas y etíopes, que se corresponden simétricamente. Sobre esa superficie está inscrito el mundo habitado sobre una cuadrícula y, a pesar del aparente desorden, las tierras, los mares, los ríos, aparecen en el mapa agrupados y distribuidos según relaciones rigurosas de correspondencia y simetría.
    La geometrización del universo tiene como consecuencia hacer innecesaria cualquier explicación sobre la estabilidad de la tierra; ya no hay necesidad de postular un soporte o unas raíces. La tierra está en el centro de universo y permanece en reposo en este lugar porque está a igual distancia de todos los puntos de la circunferencia celeste; no existe nada que la haga desplazarse hacia abajo en lugar de hacerlo hacia arriba; no hay nada que la haga moverse hacia un lado en lugar de hacerlo hacia otro.»
  20. Volver arriba Reyes, Alfonso (2000). Fondo de cultura económica, ed. Estudios Helénicos (Segunda edición). México D.F.: FCC. p. 75. ISBN 968-16-1035-0. «El primero que imaginó ya la Tierra como una esfera fue Pitágoras[...]Fue el primero que llamó al Universo "esfera" y "cosmos" u orbe ordenado, y que puso en el centro a la Tierra esférica.»
  21. Volver arriba J. Spielvogel, Jackson (2004). «Hacia un cielo y una tierra nuevos: La Revolución Científica y el surgimiento de la ciencia moderna». En Thomson learning inc. civilizaciones de occidente volumen B. (quinta edición). México D.F.: Thomson. p. 444. ISBN 0-534-60006-9.
  22. Volver arriba Asociación amigos de la astronomía (2011). «La astronomía moderna». Archivado desde el original el 28 de noviembre de 2015. Consultado el 30 de septiembre de 2012.
  23. Volver arriba Elena, Alberto (1995). «La revolución astronómica»Historia de la Ciencia y de la técnica; Tomo XII La revolución astronómica. (primera edición). Madrid, España: Akal. p. 10. ISBN 84-460-0380-5.
  24. Volver arriba Biografías y Vidas (2012). «Galileo Galilei». Consultado el 30 de septiembre de 2012.
  25. Volver arriba Torres Rivera, Lina M. (2004). «Ciencias Sociales y otras formas de conocimiento». En Cengage Learning Editores. Ciencias sociales: Sociedad y cultura contemporáneas (tercera edición). Thomson. pp. 60-61. ISBN 97-068-6433-4.
  26. Volver arriba Russell, Bertrand (1988). «Ejemplos de métodos científicos». En Ercilla. El panorama de la ciencia (primera edición). pp. 11-12.
  27. Volver arriba Malet, Antoni (2004). «Estética y geometría en la astronomía del renacimiento». En Universidad de Sevilla. Matemáticas y matemáticos (primera edición). Sevilla, España. pp. 72-76. ISBN 84-472-0810-9.
  28. Volver arriba Giancoli, C. Douglas (2007). «Movimiento circular y gravitación». En Pearson Educación. Física: Principios con aplicaciones (sexta edición). México D.F. pp. 125-126. ISBN 970-26-0695-0.
  29. Volver arriba Biografías y Vidas (2012). «Isaaac Newton, su obra». Consultado el 1 de octubre de 2012.
  30. Volver arriba Online Etymology Dictionary (2012). «Definición de solar» (en inglés). Consultado el 1 de octubre de 2012.
  31. Volver arriba Dept. Physics & Astronomy University of Tennessee (2012). «Comet Halley» (en inglés). Consultado el 1 de octubre de 2012.
  32. Volver arriba Icarito (2012). «Los cometas». Consultado el 1 de octubre de 2012.
  33. Volver arriba Giancoli, C. Douglas (2007). «Lente de aumento». En Pearson Educación. Física: Principios con aplicaciones (sexta edición). México D.F. p. 706. ISBN 970-26-0695-0.
  34. Volver arriba Fayerwayer (2011). «50 años del primer hombre en el espacio: Historia, datos y video». Consultado el 1 de octubre de 2012.
  35. Volver arriba Grossman, Lisa (13 de agosto de 2009). «Planet found orbiting its star backwards for first time». NewScientist. Consultado el 10 de octubre de 2009.
  36. Volver arriba Harold F. Levison, Alessandro Morbidelli (2003). «The formation of the Kuiper belt by the outward transport of bodies during Neptune’s migration» (PDF). Consultado el 25 de junio de 2007.
  37. Volver arriba Harold F. Levison, Martin J Duncan (1997). «From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets». Icarus 127 (1): 13-32. Bibcode:1997Icar..127...13Ldoi:10.1006/icar.1996.5637.
  38. Volver arriba M Woolfson (2000). «The origin and evolution of the solar system». Astronomy & Geophysics 41 (1): 1.12. doi:10.1046/j.1468-4004.2000.00012.x.
  39. Volver arriba «Plutón deja ser considerado planeta tras el acuerdo de la comunidad astronómica internacional». Consultado el 22 de marzo de 2012.
  40. Volver arriba «Dawn: A Journey to the Beginning of the Solar System»Space Physics Center: UCLA. 2005. Archivado desde el original el 24 de mayo de 2012. Consultado el 3 de noviembre de 2007.
  41. ↑ Saltar a:a b c Lecture 13: The Nebular Theory of the origin of the Solar System. Universidad de Arizona.
  42. Volver arriba Irvine, W. M. (1983). The chemical composition of the pre-solar nebula. Cometary exploration; Proceedings of the International Conference. p. 3.
  43. Volver arriba Greaves, Jane S. (2005). Disks Around Stars and the Growth of Planetary Systems. Science 307 (5706): pp. 68-71.
  44. Volver arriba Varios autores (2000). «Present Understanding of the Origin of Planetary Systems». Strategy for the Detection and Study of Other Planetary Systems and Extrasolar Planetary Materials. National Academy Press. pp. 21-33.
  45. Volver arriba Boss, A. P.; Durisen, R. H. (2005). Chondrule-forming Shock Fronts in the Solar Nebula: A Possible Unified Scenario for Planet and Chondrite Formation. The Astrophysical Journal 621 (2): L137.
  46. Volver arriba Sukyoung Yi; Pierre Demarque; Yong-Cheol Kim; Young-Wook Lee; Chang H. Ree; Thibault Lejeune; Sydney Barnes (2001). Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture. Astrophysical Journal Supplement 136: pp. 417-437.
  47. Volver arriba A. Chrysostomou; P. W. Lucas (2005). The Formation of Stars. Contemporary Physics 46 (1): pp. 29-40.
  48. ↑ Saltar a:a b Schröder, K.-P.; Connon Smith, Robert (2008). Distant future of the Sun and Earth revisited. Monthly Notices of the Royal Astronomical Society 386 (1): pp. 155-163.
  49. Volver arriba Nir J. Shaviv (2003). Towards a Solution to the Early Faint Sun Paradox: A Lower Cosmic Ray Flux from a Stronger Solar Wind. Journal of Geophysical Research 108 (A12): 1437.
  50. Volver arriba Pogge, R. W. (1997). «The Once & Future Sun». New Vistas in Astronomy. astronomy.ohio-state.edu.
  51. Volver arriba Daniel Marín (20 de enero de 2016). «Estrechando el cerco alrededor del Planeta X (no, no se ha descubierto un noveno planeta del sistema solar)»Blog Eureka. Consultado el 24 de febrero de 2016.
  52. Volver arriba Daniel Marín (22 de enero de 2016). «Detectando el noveno planeta con la sonda Cassini»Blog Eureka. Consultado el 24 de febrero de 2016.
  53. Volver arriba Resoluciones de la Asamblea General del 2006 de la UAI
  54. Volver arriba UAI (2006). «The IAU draft definition of "planet" and "plutons"» (en inglés). Consultado el 5 de agosto de 2011.
  55. Volver arriba UAI (2006). «Definition of a Planet in the Solar Syste» (PDF) (en inglés). Consultado el 5 de agosto de 2011.
  56. Volver arriba Larry McNish: The RASC Calgary Centre - How Fast Are We Moving?. Actualización: 2013-01-29. Consultada: 2013-08-29. [1]

Bibliografía

Enlaces externos

Sitios web con información general
Programas informáticos de utilidad